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Chimera states on the surface of a sphere
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A chimera state is a spatiotemporal pattern in which a network of identical coupled oscillators exhibits
coexisting regions of asynchronous and synchronous oscillation. Two distinct classes of chimera states have been
shown to exist: “spots” and “spirals.” Here we study coupled oscillators on the surface of a sphere, a single
system in which both spot and spiral chimera states appear. We present an analysis of the birth and death of
spiral chimera states and show that although they coexist with spot chimeras, they are stable in disjoint regions
of parameter space.
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I. INTRODUCTION

Over the last half century, significant advances have been
made in understanding the dynamics of coupled oscillators.
Since the pioneering work of Winfree [1] and Kuramoto
[2], the nonlinear dynamics community has been able to use
both analytical and numerical techniques to study the onset
of synchronization and to explore other types of dynamics,
including varying degrees of coherence and incoherence, in a
broad class of oscillator networks.

Before 2002, divergent behaviors such as incoherence and
coherence were thought to result from heterogeneities. How-
ever, Kuramoto and Battogtokh showed that even networks
of identical oscillators could split into regions of coherence
and incoherence [3]. Since this surprising discovery, these
“chimera states” have been reported in a vast array of network
topologies [4–9] including spatially embedded networks like
a ring of oscillators [3,10,11], a torus [12,13], and a plane
[14–17].

Here we study the dynamics of Kuramoto oscillators on the
surface a unit sphere S2. In this system, the phases ψ(r) are
governed by

∂ψ(r)

∂t
= ω −

∫
S2

G(r,r′) sin(ψ(r) − ψ(r′) + α)dr′, (1)

where G(r,r′) is a continuous coupling kernel.
We choose to study this system for several reasons. There

are homeomorphisms (continuous deformations) from the
sphere to many common closed two-dimensional surfaces em-
bedded in three dimensions; spheres are topologically equiva-
lent to all kinds of different surfaces with physical and biologi-
cal relevance. Our results suggest that chimera states are likely
to occur for oscillators on any orientable closed surface [30].

Furthermore, the sphere is a geometry in which both spot
and spiral chimera states appear in very simple forms. These
two unique dynamical patterns have yet to be connected from
an analytical perspective. Spiral chimeras on the sphere show
an intriguing similarity to patterns of activity displayed by the
human heart during ventricular fibrillation [19,20].

*markpanaggio2014@u.northwestern.edu

We analyze the dynamics of this system with near-global
coupling and demonstrate the existence of spot and spiral
chimera states in the perturbative limit. Then, using a variety of
numerical and analytical techniques, we explore the role of the
coupling length and phase lag α in determining the existence
and stability of these unusual patterns (see Fig. 1).

II. BACKGROUND

In two-dimensional spatially embedded networks of identi-
cal oscillators, two different classes of chimera states have been
reported: spots and spirals. For spot chimeras, oscillators form
spots of incoherence and coherence. In the coherent region, all
oscillators share the same phase. For spiral chimeras, a region
of incoherence is surrounded by a coherent region. In the
coherent region, the phases of the oscillators make a full cycle
along any path around the incoherent spot. Thus the lines of
constant phase resemble spiral arms around an implied phase
singularity at the center of the incoherent region.

Spot chimeras were discovered first. Their bifurcations
[12,21] and stability [11,22] have been studied extensively
with near-global coupling. When α is near π/2, unstable and
stable spot chimeras bifurcate off of the fully synchronized and
drifting states respectively and then disappear due to a saddle
node bifurcation. Thus they only exist near the Hamiltonian
limit α = π/2 [23–25].

Spiral chimeras are not as well understood. They were
reported by Shima and Kuramoto on an infinite plane [14].
Their existence was confirmed analytically by Martens et al.
[15], but their bifurcations and stability have not yet been
studied from an analytical perspective. Numerical experiments
have suggested that they are only stable when α is near 0 (a
dissipative limit) and when the coupling is more localized
[13,15].

III. ANALYSIS

We consider the special case where the coupling kernel is
defined as

G(r,r′) = κ

4π sinh κ
eκ(r·r′). (2)

1539-3755/2015/91(2)/022909(10) 022909-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.022909


MARK J. PANAGGIO AND DANIEL M. ABRAMS PHYSICAL REVIEW E 91, 022909 (2015)

(a) (b)

180

150

210

π

120

240

90

270
φ ≥ π/2

300

60

30

330

0

ψ (phase)

60

300

90

270
φ < π/2

120

240

−π

150

210

180

(c)

180

150

210

π

120

240

90

270
φ ≥ π/2

300

60

30

330

0

ψ (phase)

60

300

90

270
φ < π/2

120

240

−π

150

210

180

(d)

FIG. 1. (Color online) Examples of spot and spiral chimera states. Each panel displays the phases of 5000 oscillators corresponding to
stable spots with � = 0.947, α = 1.568, and κ = 0.25 [panels (a) and (c)] and spirals with � = 0.478, α = 0.589, and κ = 15 [panels (b) and
(d)]. Panels (a) and (b) display the sphere in three dimensions, while panels (c) and (d) display two-dimensional projections of a sphere from
above and below. The phase of each oscillator is indicated by the color.

This is known as the Von-Mises-Fisher distribution [26]
and represents the analog of a normal distribution on a
sphere. The variance (coupling length) of this distribution is
inversely related to the concentration parameter κ . As κ → ∞,
G(r,r′) → δ(r − r′) representing purely local coupling. When
κ → 0, G(r,r′) → 1/4π representing global coupling. We are
interested in the role this concentration plays in the dynamics.

Following the approach of Kuramoto and Battogtokh [3],
we shift into a rotating frame with angular frequency 
 and
define a complex order parameter,

R(r,t)ei�(r,t) =
∫
S2

G(r,r′)eiψ(r′,t)dr′. (3)

Equation (1) can be rewritten in terms of the order parameter
and the frequency difference � = ω − 
 revealing two types
of stationary solutions: where R(r) � |�|, oscillators become
phase-locked with a stationary phase, and where R(r) < |�|,
they cannot become phase-locked but instead drift with a
stationary phase distribution. In both the locked and drifting re-
gions, these stationary solutions must satisfy a self-consistency
equation

R(r)ei�(r) = eiβ

∫
S2

G(r,r′)h(r′)ei�(r′,t)dr′, (4)

where h(r) = �−
√

�2−R2(r)
R(r) and β = π/2 − α.

To reduce the dimensionality of this system, we parametrize
the surface of the sphere using the mathematical convention
for spherical coordinates,

r = cos θ sin φ î + sin θ sin φĵ + cos φk̂,

where θ represents the azimuthal angle and φ represents
the polar angle, and restrict our search to solutions of the

form

R(r) = A(φ), (5a)

�(r) = B(φ) + Nθ, (5b)

where N is an integer. These solutions correspond to rota-
tionally symmetric spots (N = 0), simple spirals (N = 1),
and higher order spirals (N > 1). Under this restriction,
Eq. (4) becomes

A(φ)eiB(φ) = eiβ

∫ π

0
KN (φ,φ′)h(φ′)eiB(φ′) sin φ′dφ′, (6)

where

KN (φ,φ′) =
∫ 2π

0
G(θ,φ,θ ′,φ′)eiN(θ ′−θ)dθ ′

= κ

2 sinh κ
eκ cos φ cos φ′

IN (κ sin φ sin φ′),

where IN is the N th order modified Bessel function of the
first kind. Note that KN is independent of θ . Equation (6)
is a complex nonlinear integral eigenvalue problem. Solving
explicitly for A(φ), B(φ), and � is not possible in general, and
solutions may not exist for all β,κ .

A. Near-global coupling

With near-global coupling (κ � 1), the coupling kernel can
be approximated to leading order in κ by

G(θ,φ,θ ′,φ′) = 1

4π
{[1 + κ[cos φ cos φ′ + cos (θ − θ ′)

× sin φ sin φ′]}.
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Substitution of this coupling kernel into Eq. (4) reveals that
the order parameter must have the following form:

R(r)ei�(r) = c + κd1 cos θ sin φ

+ κd2 sin θ sin φ + κd3 cos φ, (7)

where 〈f (r′)〉 = 1
4π

∫
S2 f (r′)dr′ and

c = eiβ〈h(r′)ei�(r′)〉, (8a)

d1 = eiβ〈h(r′)ei�(r′) cos θ ′ sin φ′〉, (8b)

d2 = eiβ〈h(r′)ei�(r′) sin θ ′ sin φ′〉, (8c)

d3 = eiβ〈h(r′)ei�(r′) cos φ′〉. (8d)

Note that the derivation of Eq. (8) does not rely on Eq. (5).
We now focus on the case where N = 0.

1. Spot chimeras

When N = 0, R and � (and therefore h) depend only on φ,
so integration with respect to θ ′ is possible giving d1 = d2 = 0.
Thus the order parameter takes the form

R(r)ei�(r) = A(φ)eiB(φ) = c + d cos φ, (9)

where d = κd3. This yields two equations:

c = 1

2
eiβ

∫ π

0

� −
√

�2 − |c + d cos φ|2
c∗ + d∗ cos φ

sin φ′dφ′,

d = 1

2
κeiβ

∫ π

0

� −
√

�2 − |c + d cos φ|2
c∗ + d∗ cos φ

cos φ′ sin φ′dφ′,

where ∗ denotes complex conjugation.
Motivated by the results from [12,21] we look for solutions

that scale like

β = β1κ, (10a)

c ∼ 1 + c1κ + c2κ
2, (10b)

d ∼ (a2 + ib2)κ2, (10c)

� ∼ 1 + �1κ + �2κ
2. (10d)

Expanding in κ and defining δ = �2 − c2 we obtain the
following conditions at leading order:

c1 =
√

2

3
[(δ − a2)3/2 − (δ + a2)3/2] + iβ1, (11a)

a2 + ib2 =
√

2

a2
2

[
2δ

3
((δ − a2)3/2 − (δ + a2)3/2)

− 2

5
((δ − a2)5/2 − (δ + a2)5/2)

]
. (11b)

Note that �1 = c1 was required to satisfy the equations
at O(

√
κ). The real part of Eq. (11a) depends only on δ and

a2. Thus we can fix δ, solve for a2, and then compute the
other unknowns directly. The parameters a2 and δ determine
the variation in the order parameter and the size of the
drifting region. Using MATCONT [27], a numerical continuation
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FIG. 2. (Color online) Solutions to Eq. (11). Panel (a) displays
parameters a2 and δ = �2 − c2 [see Eq. (10) for the definitions].
The green (dotted) curve corresponds to solutions with spatially
modulated drift. The blue (solid) curve corresponds to stable spot
chimeras. The magenta (dashed) curve corresponds to unstable spot
chimeras. The red (solid) curve along the vertical axis represents
uniform solutions. Panel (b) displays the fraction of oscillators in
the drifting region as a function of α (where κ = 0.1). The solid
curve represents stable chimera states and the dashed curve represents
unstable chimera states.

software package for MATLAB, we find the solutions to
Eq. (11) and display them in Fig. 2(a). Figure 2(b) shows
the fraction drifting as a function of α. These solutions
resemble the spot solutions observed in Refs. [12,21] in that
unstable spot chimeras bifurcate off of a phase-locked state and
stable spot chimeras bifurcate off of a modulated drift
state. At a critical value of β = 4

1594323 (188
√

10 + 505)3/2κ

≈ 0.0915κ , the chimera states disappear due to a saddle node
bifurcation (see Appendix A). This explains the change in
stability observed in panel (b). The stability of these solutions
was confirmed via numerical integration of Eq. (1).

2. Spiral chimeras

No higher order spirals (N > 1) occur to lowest order in
κ because all terms in Eq. (8) integrate to 0. For N = 1, on
the other hand, c = d3 = 0 and d2 = id1, so Eq. (7) yields an
order parameter of the form

R(r)ei�(r) = A(φ)eiB(φ)eiθ = κd1 sin φeiθ . (12)

Without loss of generality, we can define the argument �(r) to
be 0 along the half plane θ = 0, making d1 real. This implies
that A(φ) = κd1 sin φ and B(φ) = 0. Defining �1 = �/κ ,
substituting this result into Eq. (4), and integrating with respect
to θ yields

d2
1 = eiβ

4

∫ π

0

(
�1 −

√
�2

1 − d2
1 sin2 φ′) sin φ′dφ′. (13)

Note that chimera states only appear if d1 > |�1|. [For d1 �
|�1|, Eq. (13) can only be satisfied for β = 0.] Integrating with
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FIG. 3. (Color online) Solutions to Eq. (14). Panel (a) displays
the values of d1 (blue solid) and �1 (red dashed) as a function of α.
Panel (b) displays the fraction of oscillators in the drifting region as
a function of α.

respect to φ, this simplifies to

d2
1 = eiβ

4

{
1

2d1

(
�2 − d2

1

)[
ln

(
d1 − |�1|
d1 + |�1|

)
+ iπ

]

+(2�1 − |�1|)
}
, (14)

where ln refers to the principal branch of the natural logarithm.
Solving Eq. (14) reveals that like spot chimeras, spiral

chimeras represent a link between coherence and incoherence
(see Fig. 3). We find that when α = 0, d1 = π/8, and �1 = 0.
This leads to a fully locked solution in which the phases depend
only on the azimuthal variable θ (a “beachball” pattern). As
α increases from 0, incoherent spiral cores are born at the
poles of the sphere and grow until α = π/2. When α = π/2,
d1 = �1 = 1/4 and the sphere is fully incoherent. Although
these spirals resemble the spirals reported in Refs. [13,15,17],
numerical experiments suggest that these states are unstable.
They only seem to gain stability when coupling is more
localized.

B. Localized coupling

To search for stable spiral chimera states, we now explore
the dynamics when κ is not small. With highly localized
coupling, the effects of curvature are negligible, and the sphere
can be approximated locally as a plane. Martens et al. showed
that, on an infinite plane, spiral chimera states appear when
α is small. Motivated by these findings, we consider the limit
where α � 1 and assume the following scalings:

� = �1α + O(α2),

A(φ) = A0(φ) + A1(φ)α + O(α2),

B(φ) = B1(φ)α + O(α2).

Expanding Eq. (6) in α to leading order yields

A0(φ) =
∫ π

0
K1(φ,φ′) sin φ′dφ′,

which can be integrated numerically to find A0(φ). To O(α)
we find that

A1(φ) = 0,

B1(φ) =
∫ π

0

K1(φ,φ′)
A0(φ)

(
B1(φ′) + �1

A0(φ′)

)
sin φ′dφ′ − 1.

Thus B1(φ) and �1 satisfy an inhomogeneous Fredholm
equation of the second kind which can be solved numerically.
This asymptotic approach decouples the magnitude of the
order parameter from its argument making it possible to solve
for each separately. It also allows a nonlinear equation to be
approximated by a series of linear equations and can be used
to find higher order approximation to A and B as well.

These results can be used to estimate the size of the inco-
herent region at the center of the spiral. To see this, let φ = φB

represent the boundary between the locked and drifting
regions. To order α, the boundary satisfies

A0(φB) = α|�1|. (16)

There are two solutions to this equation that are symmetric
about the equator, one with φB ≈ 0 and one with φB ≈ π . To
find the size of the incoherent region with φB ≈ 0, we expand
A0 about φ = 0,

A0(φB) ∼ A0(0) + φBA′
0(0)

∼ 0 + φB

∫ π

0

∂

∂φ
K1(0,φ′) sin φ′dφ′.

(17)

Substituting Eq. (16) into Eq. (17), integrating with respect to
φ′, and solving for φB yields

φB = 4 sinh κ

πκI1(κ)
α|�1|. (18)

Thus, near the birth of the chimera state the size of the
incoherent region grows with α. Since �1 is κ dependent
but its scaling with κ is unknown, the dependence of the size
of the incoherent region on κ cannot be determined using
Eq. (18). However, given a numerical solution for A(φ) and
�, the value of φB is readily apparent and the size of the drifting
region can be easily calculated (see Fig. 7 in Appendix E).

IV. NUMERICAL CONTINUATION

The asymptotic approximations discussed in Secs. III A
and III B are only valid when α � 1 or κ � 1. To explore
other regions of parameters space, we used MATCONT [27] for
numerical continuation. This software package uses Newton’s
method to allow the user to continue equilibria of systems
of ordinary differential equations (ODEs) and to detect
bifurcations.

For numerical continuation, we defined w(φ) =
(A(φ)/�)eiB(φ) and rewrote Eq. (6) as

w(φ)� = eiβ

∫ π

0

KN (φ,φ′)w(φ′) sin φ′

1 +
√

1 − |w(φ′)|2
dφ′. (19)
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The known spiral solutions for w(φ) are nearly sinusoidal,
therefore it is natural to represent them by a Fourier sine series

w(φ) =
∞∑

n=1

(xn + iyn) sin(nφ),

where

xn = 2

π

∫ π

0
Re(w(φ)) sin(nφ)dφ,

yn = 2

π

∫ π

0
Im(w(φ)) sin(nφ)dφ.

In Fourier space, it is straightforward to show that the fixed
points of

x ′
n = Re

(
eiβ

�

∫ π

0

Kn
1 (φ′)w(φ′) sin φ′

1 +
√

1 − |w(φ′)|2
dφ′

)
− xn, (20a)

y ′
n = Im

(
eiβ

�

∫ π

0

Kn
1 (φ′)w(φ′) sin φ′

1 +
√

1 − |w(φ′)|2
dφ′

)
− yn, (20b)

�′ = max (arg w(φ)), (20c)

where Re and Im denote real and imaginary parts and

Kn
1 (φ′) = 2

π

∫ π

0
K1(φ,φ′) sin(nφ)dφ

represents solutions to Eq. (19). Equation (20c) was imposed
to eliminate the extra degree of freedom in Eq. (19) (invariance
under rotations w → weir ).

V. RESULTS

A. Existence

The results from numerical continuation of spiral chimeras
are displayed in Figs. 4 and 5. We find that spiral chimera
states satisfying Eqs. (19) and (6) continue to exist for
κ � O(1). Near α = 0 and α = π/2, we were able to continue
these solutions indefinitely in κ . For intermediate values
of α numerical continuation fails prematurely at κmax < 50.

Attempts at continuing beyond this point by increasing the
number of Fourier coefficients retained, refining the grid
for numerical integration, and continuing using alternative
methods (see Appendix B) yielded incremental increases in
κmax. This suggests that the failure of convergence is due to
narrowing of the basin of attraction for the numerical solution
and increasingly sharp transitions in the shape of the solutions,
however we cannot rule out a failure of existence due to a
bifurcation.

Qualitatively these spirals resemble the ones observed
for κ � 1. They are symmetric with respect to reflections
about the equator. However, instead of straight spiral arms
(lines of constant phase) where B(φ) ≈ 0 (see Fig. 4, bottom
panels), these solutions have curved spiral arms with B(φ) �= 0
(see Fig. 4, top panels). The fraction of oscillators drifting is
zero for α = 0 and increases with α until the entire sphere is
incoherent when α = π/2. See Fig. 1 for an example.

Spot chimeras appear to exist for arbitrary κ and seem
qualitatively similar to solutions for κ � 1 (see Appendix C).

B. Stability

In order to test the stability of these solutions, we approx-
imated Eq. (1) by selecting 5000 points uniformly distributed
on the surface of a sphere [28,29], generating initial condi-
tions consistent with the order parameters obtained through
numerical continuation (see Appendix D), and integrating for
5000 units of time (10–1000 cycles of the locked oscillators,
depending on the values of α and κ). After this interval, if
the final state possessed a phase distribution that was nearly
identical to the initial state (except for possible drifting of the
incoherent region) we classified the chimera state as stable.

We observed a narrow strip with stable chimeras extending
down to α ≈ 0.85 and κ ≈ 7.5. We believe that, to conform
with the planar case explored in Ref. [6], this strip is likely to
originate from α ≈ 0 and κ  1 (in this limit the coupling is so
localized that the curvature of the sphere becomes irrelevant).
Near the boundaries of this strip, solutions remained close to
the initial condition for most of the integration time before
evolving toward a fully coherent state or spiral pattern without
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FIG. 4. (Color online) Typical solutions to Eq. (6). Panels (a)–(d) display A(φ) and B(φ) for α = 0.47 and κ = 25, α = 1.30 and κ = 25,
α = 0.47 and κ = 2.5, and α = 1.30 and κ = 2.5 respectively. The blue (solid) curve represents A(φ) and the red (dash-dotted) represents
B(φ). Gray boxes denote the drifting regions [0,φB ) and (π − φB,π ].
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FIG. 5. (Color online) Existence and stability of spiral chimera
states. Dots represent points where spiral chimera states satisfying
Eq. (6) exist. Red (dark) points correspond to chimeras that are
unstable in numerical simulations. Black points correspond to
chimeras that appear to be stable after integrating Eq. (1) for 5000
units of time. Cyan (light) points correspond to chimeras where
the final state is a spiral but shows noticeable deviation from the
initial condition. In the yellow shaded region (with α near 0) chimera
states exist but have too few incoherent oscillators to reliably assess
stability (see Appendix E). All of the spiral chimeras that appear to be
stable are contained in the narrow gray strip (with intermediate values
of α).

an incoherent region, suggesting that spiral chimera states
outside of the strip were unstable. At the moment we have
no analytical explanation for the observed changes in stability.
One possibility is that the states we refer to as stable are
actually just very long-lived transients. However, that raises the
question of why this particular strip would have dramatically
longer transient times than neighboring regions of parameter
space. Another possibility is that stability changes due to some
as of yet unidentified bifurcation. This bifurcation cannot be
due to the presence of a spot chimera because of the topological
differences and the fact that spot chimeras do not exist near
the boundaries of this region, but it could be due to other
equilibrium spiral patterns that only satisfy ansatz (5) at the
bifurcation point.

VI. DISCUSSION AND CONCLUSIONS

This work demonstrates the existence of both spot and
spiral chimera states on the surface of a sphere. We find
that both spirals and spots represent links between coherence
and incoherence. In agreement with previous results, when
coupling is nearly global, spot chimeras only exist near the
Hamiltonian limit (α = π/2) whereas spiral chimeras exist
for all values of 0 � α � π/2. For more localized coupling,
numerical results suggest that both types of chimera states
continue to exist, but that they have disjoint regions of stability.
A puzzling apparent failure of existence of chimera states
for localized coupling and intermediate phase lags (α ≈ π/4)
remains to be explained.

More broadly, we have demonstrated that the surface of
a sphere provides an interesting testbed for assessing the
properties of chimera states—one in which analogs of many
previously reported chimera states exist. Although the under-
lying cause is the same, this topology leads to visually distinct

patterns from other two dimensional systems—on a plane,
single spirals appear, whereas, on a torus, spirals only appear in
multiples of 4 and on a sphere spirals appear in pairs. The result
that both spiral and spot chimera states occur over a wide range
of parameter values in these systems suggests that chimera
states may be possible in any network of nonlocally coupled
oscillators on a closed, orientable surface. In particular, the
topological resemblance of a sphere to real-world systems
makes this geometry potentially valuable for applications
to naturally occurring biological oscillatory networks (e.g.,
the human heart and brain, where chimera states could be
associated with dangerous ventricular fibrillation or epileptic
seizure states).
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APPENDIX A: COMPUTING SADDLE-NODE
BIFURCATION

The saddle-node bifurcation with respect to β (or, equiv-
alently, α) visible in Fig. 2(b) is straightforward to compute
numerically from Eqs. (11). To compute an analytical form for
the critical β1, however, we proceeded as follows:

(i) Isolate δ in the imaginary part of (11a), then eliminate
δ by plugging into the real part of (11b) to get a function
f (a2,β1) = 0.

(ii) Find the maximum β1 for which a solution exists
by differentiating f = 0 with respect to a2 and imposing
dβ1/da2 = 0, then solving for β1(a2).

(iii) Plug in the result to get f (a2,β1(a2)) = 0 and solve for
a2 to get a

(crit)
2 = 86

2187

√
10 + 580

2187 .

(iv) Plug a2 = a
(crit)
2 into β1(a2) to get β

(crit)
1 =

4
1 594 323 (188

√
10 + 505)3/2.

Note that in each step itemized here significant simplifica-
tion may be required to obtain a suitably concise result.

APPENDIX B: NUMERICAL CONTINUATION

The nonlinearity of Eq. (6) made it unlikely that numerical
methods would converge to the correct solution without an
accurate initial guess. So, we began with the solutions for
A(φ), B(φ), and � derived for κ � 1 and α � 1 and then
implemented a variety of algorithms in order to numerically
continue spiral chimera states over the parameter space 0 �
α � π/2 and 0 � κ .

1. Iterative method

The simplest approach we implemented was a naive
iterative method. Equation (19) has the form �w = f (w).
Given an initial guess for the solution to Eq. (19) w0(φ) (in
practice we used a discrete set of φ values), we updated our
solution as follows:

Step 1. Define fn+1(φ) = eiβ
∫ π

0 KN (φ,φ′) wn(φ′)
1+

√
1−|wn(φ′)|2

sin φ′dφ′.
Step 2. Choose �n+1 to minimize E = | 1

�n+1
fn+1(φ) −

wn(φ)|.
Step 3. Update wn+1(φ) = 1

�n+1
fn+1(φ).
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To carry out numerical continuation using this heuristic
scheme, we selected a known solution as a starting point,
made a small change to one of the parameters, and then
iterated until the residual rn+1 = wn+1(φ) − wn(φ) was small.
This method is not guaranteed to converge, but for a starting
point sufficiently close to the true solution and steps that were
sufficiently small, it did allow us to identify solutions for new
ranges of α and κ .

2. Optimization method

In order to improve upon the above, we implemented
a second similar method. We again started with a known
solution and made a small change to either α or κ . Then,
we utilized a quasi-Newton method (as implemented in the
MATLAB function fminunc) to find the values of w(φ) and �

that minimized the error:

E =
∣∣∣∣w(φ)� − eiβ

∫ π

0

KN (φ,φ′)w(φ′) sin φ′

1 +
√

1 − |w(φ′)|2
dφ′

∣∣∣∣. (B1)

This method seemed to be more stable than the iterative
approach, but it was more computationally intensive.

3. Improvements and limitations

Both of the above methods used zeroth order extrapolation
to generate a starting point for the next set of parameter
values. To improve upon this method we also used first order
extrapolation to generate the next starting point. For example,
to continue in κ , given κ1 < κ2 and their associated solutions
for � and w(φ), we used a linear approximation to generate a
guess at κ3 > κ2. This guess was then used as a starting point
for the above methods. Although the above approaches did
yield marginal gains in exploring α vs κ space, ultimately the
time and memory demands were far too large to adequately
explore the domain of interest due to the small step sizes
required for convergence.

4. MATCONT

We found that MATCONT was the most effective method
for numerically continuing spiral chimera states. Our first
attempt at writing Eq. (6) as a system of ODEs, the input
format required by MATCONT, used a discretized version of
Eq. (19) on a uniform grid of 101 points between 0 � φ �
π . Unfortunately, the algorithm was unable to identify an
appropriate search direction for continuation.

Instead we represented w(φ) as a Fourier sine series as
described in the main text. For κ � 1, w(φ) is sinusoidal, thus
only the first Fourier coefficient is nonzero. As κ increases
subsequent terms become more important. For κ < 50,∣∣∣∣∣

∣∣∣∣∣
∞∑

n=1

(xn + iyn) sin(nφ) −
16∑

n=1

(xn + iyn) sin(nφ)

∣∣∣∣∣
∣∣∣∣∣

� O(10−4).

So, we truncated the series after 16 terms (inclusion of higher
frequency modes does not significantly change the results). We
then verified the accuracy of these solutions by substituting

them directly into Eq. (19). The integrals in Eqs. (20a) and
(20b) were evaluated using Simpson’s rule with 101 grid
points. We terminated continuation when the change in κ over
10 steps was less than 10−5.

5. Interpolation and refinement

The endpoints (κmax) of the curves obtained from MATCONT

were somewhat irregular. To address this, we compiled all of
the solutions from MATCONT and used spline interpolation and
extrapolation to generate guesses for missing solutions. Then,
using the optimization method described above we refined
the guesses until the optimization scheme terminated and
computed the error for these new points using Eq. (B1). If
the norm of the error was less than 10−4, we accepted the
result as a solution to Eq. (19). This allowed us to extend our
results to higher values of κ .

APPENDIX C: SPOT CHIMERAS WITH LOCALIZED
COUPLING

The spot chimera solutions for A(φ), B(φ), and � derived
for κ � 1 can also be continued for larger values of κ . How-
ever, unlike the spiral solutions, these solutions do not resemble
sine functions, and as a result, they cannot be accurately
represented using a truncated Fourier sine series. Instead, a
cosine series or full Fourier series may be appropriate.

Numerical continuation results from MATCONT (see
Fig. 6) suggest that solutions exist for higher values of κ

that are qualitatively similar to the solutions with κ � 1.
As the asymptotic analysis in Sec. III A indicates, the critical
value of β corresponding to the saddle node bifurcation grows
with κ .

In our numerical exploration of the stability of spiral
chimeras, while integrating Eq. (1) we observed that some of
the unstable chimeras with α near π/2 and κ > 1 evolved into
spot chimeras. This suggests that spot chimeras remain stable
for larger values of κ . As a result, we believe spot chimeras
with localized coupling warrant further exploration.
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FIG. 6. (Color online) Continuation of spot chimeras in κ . The
blue (solid) curve is the continuation of a stable chimera and the
magenta (dashed) curve is the continuation of an unstable chimera
satisfying β = 0.01.
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APPENDIX D: GENERATING INITIAL CONDITIONS

In many systems, the basin of attraction for a chimera state
is small compared with the basins of attraction of the uniform
coherent and incoherent states. Since chimera states can only
be observed in simulations when the initial condition is inside
these basins, completely random initial conditions are unlikely
to converge to a chimera.

It is also difficult to determine the structure of the basins of
attraction of equilibrium points in high dimensional systems.
So, the most effective method for observing a chimera state
in simulation is to select an initial condition very close to the
chimera. Such an initial condition can be found given a solution
for the order parameter R(r)ei�(r) and the natural frequency in
the rotating frame � = ω − 
 by using the method outlined
below.

After making the transformation ψ → ψ + 
t to shift into
a rotating frame of reference, Eq. (1) can be written as

∂ψ(r)

∂t
= � − R(r) sin[ψ(r) − �(r) + α].

This equation admits two types of stationary solutions.
Wherever R � |�|, oscillators have a stationary phase ψ∗
satisfying

� − R sin(ψ∗ − � + α) = 0. (D1)

Wherever R < |�| oscillators cannot become phase-locked.
However, if the phase ψ at each point r is interpreted as a
probability distribution f (ψ), then there are stationary phase
distributions satisfying the continuity equation

∂f

∂t
+ ∂

∂ψ
(f v) = 0.

where v = � − R sin(ψ − � + α) represents the phase veloc-
ity. It is straightforward to check that the following distribution
is stationary:

f (ψ) =
√

�2 − R2

2π |� − R sin(ψ − � + α)| . (D2)

Therefore, given R, �, and � at the position of each oscillator
r, an appropriate initial phase ψ can be computed as follows:

Case 1. If R � |�| set ψ = ψ∗ by solving Eq. (D1).
Case 2. If R < |�| choose ψ randomly using the probabil-

ity distribution in Eq. (D2).
(a) Compute the cumulative distribution F (ψ) =∫ ψ

−π
f (x)dx.

(b) Choose X to be a uniformly distributed random number
between 0 and 1.

(c) Set ψ = F−1(X).

APPENDIX E: NUMERICAL STABILITY

To complement our numerical results, we would have liked
to perform a rigorous stability analysis on our system, as
Omel’chenko was able to do for a ring of coupled oscillators
[11]. Unfortunately the nonlinear eigenvalue problem in our
system results in a complex nonlinear integral equation
with a nonseparable kernel which we were unable to solve
analytically.

There are various limitations to using numerical integration
to ascertain information about stability in this system. First of
all, numerical integration itself introduces error. To address
this, we used MATLAB’s built in adaptive Runge-Kutta method
ODE45 for integration and verified that the results were
consistent with those obtained using other ODE solvers. To
accelerate computations, large matrix operations were carried
out on a NVIDIA GeForce GTX 570 GPU with 480 cores using
the Parallel Computing Toolbox, a MATLAB implementation of
NVIDIA’s CUDA platform.

Second, choosing uniformly distributed points on the
surface of a sphere is a nontrivial problem. There are various
heuristic methods for generating points that are approximately
uniformly distributed. We used the method described in
Ref. [28] which is a modification of the generalized spiral
points method proposed by Rakhmanov et al. [29]. By
selecting evenly spaced points along a spiral from the north
pole to the south, one obtains nearly “uniformly” distributed
points. The slight nonuniformity means that some oscillators
may be weighted slightly more heavily than others in the
network.

Third, the lifetime of chimera states can depend on the
number of grid points. Previous work with spot chimeras has
suggested that they are stable states with an infinite number of
oscillators and long-lived transients with a finite number [30].
The lifetime of these metastable chimera states grows with
the number of oscillators, but so does the computation time.
For the figures displayed in this paper, we chose to use 5000
oscillators as a compromise allowing for full exploration of
parameter space in a reasonable amount of time. Our results
were robust to variations in the number of oscillators (we also
tried 2500, 8000, and 10 000 for selected cases of interest).
However, there is no guarantee that the stability with a finite
number of oscillators will agree with that when N → ∞.

Note that even when the number of grid points is large,
for some parameter values (e.g., small α for spiral chimeras)
the number of points within the incoherent region may
still be small (see Fig. 7), leading to inaccurate numerical
assessment of stability (this is the origin of the yellow region in
Fig. 5). Furthermore, the effective coupling length given by (2)
is proportional to κ−1, so the number of grid points must grow

α

κ

0 π
2
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0.25

0.5

0.75

1

FIG. 7. (Color online) Fraction drifting for spiral chimera states.
Dots represent points where spiral chimera states satisfying Eq. (6)
exist. These points are identical to Fig. 5. The color indicates the
fraction drifting for each solution.
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FIG. 8. (Color online) Phase velocities for spot and spiral chimera states. Panels display the phase velocities of 5000 oscillators (indicated
by the color) corresponding to a stable spot chimera with � = 0.946, α = 1.554, and κ = 0.25 [panels (a) and (c)] and a stable spiral chimera
with � = 0.478, α = 0.589, and κ = 15 [panels (b) and (d)]. Panels (a) and (b) display the sphere in three dimensions, while panels (c) and (d)
display two-dimensional projections of a sphere from above and below. The phase velocities are averaged over 200 units of time in a rotating
frame in which locked oscillators have phase velocity �.

with κ if a minimal number are to be included within the
“coupling zone” where coupling strength is significant.

Finally, numerical integration cannot truly determine sta-
bility. We integrated Eq. (1) for 5000 units of time. This
termination criteria is somewhat arbitrary and could lead
to unstable but long-lived transient states being classified
as stable. In our analysis, we found that the boundaries of
the “stable” region did change slightly depending on the
termination criteria. However, we also tested a subset of points

in the domain and verified that they appeared stable after
10 000 units of time. Both 5000 and 10 000 time units are
orders of magnitude longer than the transient lifetime of a
typical chimera state that we identify as numerically unstable.

Figure 8 shows the typical pattern of phase velocities
distributed on the sphere for both stable spot and stable spiral
chimera states. The final pattern of phase velocities was used
in conjunction with the final pattern of phases to distinguish
between stable and unstable chimera states.
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