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Chimera states are surprising spatiotemporal patterns in which regions of coherence and incoherence

coexist. Initially observed numerically, these mathematical oddities were recently reproduced in a

laboratory setting, sparking a flurry of interest in their properties. Here we use asymptotic methods to

derive the conditions under which two-dimensional ‘‘spot’’ and ‘‘stripe’’ chimeras (similar to those

observed in experiments) can exist in a periodic space. We also discover a previously unobserved

asymmetric chimera state, whose existence plays a major role in determining when other chimera states

are observable in experiment and simulation. Finally, we use numerical methods to verify theoretical

predictions and determine which states are dynamically stable.

DOI: 10.1103/PhysRevLett.110.094102 PACS numbers: 05.45.Xt, 89.75.Kd

In nature, arrays of oscillators often synchronize and
oscillate with a single frequency. This phenomenon can be
observed in diverse systems ranging from laser arrays [1]
and Josephson junctions [2–4] to populations of fireflies [5]
and heart cells [6]. While incoherence and synchronization
are ubiquitous in these systems, other complex patterns are
also possible.

The standard mathematical paradigm for modeling
arrays of coupled oscillators is the Kuramoto model [7].
Kuramoto approximated the complex Ginzburg-Landau
equation and demonstrated that, under weak coupling,
amplitude changes can be ignored [8]. Thus, oscillators
can be approximated as coupled only through their phase
with dynamics governed by

_� i ¼ !i � K
XN
j¼0

sinð�i ��j þ �Þ;

where �i is the phase of oscillator i, !i is the natural
frequency,K is the coupling strength, and � is the coupling
lag [9]. For arrays with narrow unimodal natural frequency
distributions and no lag (� ¼ 0), a first-order phase tran-
sition occurs. Below a critical coupling strength, oscillators
remain incoherent, and above this threshold, they begin to
synchronize [10,11].

Later, Kuramoto and Battogtokh observed that with non-
zero lag and nonlocal coupling, surprisingly, regions of
coherence and incoherence can coexist even for identical
oscillators (!i ¼ ! 8i) [12,13]. Abrams and Strogatz
described this hybrid state as a ‘‘chimera’’ [14]. Since
then, chimera states have been observed in various systems
including two groups of oscillators with no spatial extent
[15,16], a ring of oscillators [13,14,17], an infinite plane
[18,19], and a periodic two-dimensional space [20]. These
states display a variety of spatial patterns including stripes,
spots (see Fig. 1), and spirals.

Recently, two experiments observed chimeras in labora-
tory settings for the first time [21]. Tinsley, Nkomo, and
Showalter used photoexcitatory feedback to couple two pop-
ulations of discrete chemical oscillators [22]. Occasionally,
one population synchronized while the other remained inco-
herent. This is consistent with the analytical results in
Ref. [15].
Meanwhile, Hagerstrom et al. used a computer with

feedback from a camera to control the phase modulation
induced by a spatial light modulator [23]. This created a
physical realization of a two-dimensional iterated map
with nonlocal coupling and periodic boundary conditions.

FIG. 1 (color online). Stripe and symmetric spot chimeras.
Each panel contains a 200 by 200 grid of oscillators. Each pixel
corresponds to a single oscillator with color representing the
phase. Panels (a) and (b) display a stripe chimera state with
a1 ¼ 0:2322, a2 ¼ 0, and � ¼ 0:1065, while (c) and (d) display
a symmetric chimera state with a coherent spot and with
a1 ¼ 0:1366, a2 ¼ 0:1366, and � ¼ 0:1494. Numerical integra-
tion indicates that these states are stable.
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They observed the formation of chimera states as one-
dimensional stripes of incoherence. Omel’chenko et al.
studied a similar system and produced both symmetric
spot and stripe patterns in numerical experiments [20].

The patterns observed numerically by Omel’chenko
et al. and experimentally by Hagerstrom et al. have yet
to be explained from an analytical perspective. Here we use
asymptotic methods to demonstrate the existence of spot
and stripe chimera states and also to deduce the existence
of new asymmetric chimera states that play a critical role in
determining stability. Our work sheds light on the lack of
experimental spot chimeras and explains the curiously
disconnected parameter ranges over which Omel’chenko
detected them numerically.

Analysis.—To determine conditions for the existence of
these chimera states, we examine a two-dimensional array
of oscillators in a space with periodic boundaries:

T 2 ¼ S1 � S1 ¼ fðu; vÞju 2 ½0; 2�Þ; v 2 ½0; 2�Þg:
This can be interpreted as the surface of a torus where the u
and v coordinates correspond to the toroidal and poloidal
angles, respectively (we disregard any effects of surface
curvature).

We consider a generalization of the traditional
Kuramoto model to a continuous distribution of oscillators:

@�ðr; tÞ
@t

¼ !�
Z
T2
Gðr; r0Þ sinð�ðr; tÞ ��ðr0; tÞ þ �Þdr0;

(1)

where Gðr; r0Þ is a continuous coupling kernel. Following
the approach of Kuramoto and Battogtokh [13], we shift
into a rotating frame with angular frequency � (to be
determined later) and define a complex order parameter:

Rðr; tÞei�ðr;tÞ ¼
Z
T2
Gðr; r0Þei�ðr0;tÞdr0; (2)

resulting in a new governing equation:

@�ðr; tÞ
@t

¼ �� Rðr; tÞ sin½�ðr; tÞ ��ðr; tÞ þ ��; (3)

where � ¼ ���t and � ¼ !��.
In regions where RðrÞ � j�j, stationary solutions to

Eq. (3) exist. Oscillators become phase-locked and rotate
at a fixed angular frequency. In regions where RðrÞ< j�j,
stationary solutions are not possible. Instead, oscillators
drift at a nonzero phase velocity and satisfy a stationary
probability density. Kuramoto and Battogtokh observed

that Eq. (3) can be used to eliminate ei�ðr;tÞ from Eq. (2).
This yields a self-consistency equation for solutions to
Eq. (3):

RðrÞei�ðrÞ ¼ ei�
Z
T2
Gðr; r0Þhðr0Þei�ðr0;tÞdr0; (4)

where hðrÞ ¼
h
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � R2ðrÞp i.
RðrÞ.

This functional self-consistency equation is effectively
infinite dimensional and yields little insight. To proceed,
we define a simple kernel representing nonlocal coupling:

Gðr; r0Þ ¼ 1

ð2�Þ2 f1þ �½cosðu� u0Þ þ cosðv� v0Þ�g:

This is the leading-order approximation to the two-
dimensional von Mises distribution, the circular analogue
of the Gaussian, and can also be interpreted as a perturba-
tion off of all-to-all coupling for � � 1. This choice allows
us to remove explicit dependence on u and v from the
integrals and express the order parameter as follows:

RðrÞei�ðrÞ ¼ cþ d1 cosðuÞ þ d2 cosðvÞ; (5)

where hfðr0Þi ¼ 1
ð2�Þ2

R
T2 fðr0Þdr0 and

c ¼ ei�hhðr0Þei�ðr0Þi; (6a)

d1 ¼ �ei�hhðr0Þei�ðr0Þ cosðu0Þi; (6b)

d2 ¼ �ei�hhðr0Þei�ðr0Þ cosðv0Þi: (6c)

Without loss of generality, we define � ¼ 0 at the point
ðu0; v0Þ ¼ ð�2 ; �2Þ, resulting in real-valued c. We use Eq. (5)

to eliminate R and � from system (6), thus reducing
infinite-dimensional functional Eq. (4) to a set of six
algebraic equations (three real and three complex) with
six variables [c, Reðd1Þ, Imðd1Þ, Reðd2Þ, Imðd2Þ, and �]:

c¼ei�
�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�jcþd1cosðu0Þþd2cosðv0Þj2p
c�þd�1cosðu0Þþd�2cosðv0Þ

�
; (7a)

d1¼�ei�
�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�jcþd1cosðu0Þþd2cosðv0Þj2p
c�þd�1cosðu0Þþd�2cosðv0Þ cosðu0Þ

�
;

(7b)

d2¼�ei�
�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�jcþd1cosðu0Þþd2cosðv0Þj2p
c�þd�1cosðu0Þþd�2cosðv0Þ cosðv0Þ

�
;

(7c)

where � denotes complex conjugation.
System (7) can be solved asymptotically for � ¼ � � 1.

Motivated by results from one dimension [17], we make an
ansatz for the scalings

� ¼ �1�; (8a)

c� 1þ c1�þ c2�
2; (8b)

d1 � ða1 þ ib1Þ�2; (8c)

d2 � ða2 þ ib2Þ�2; (8d)

�� 1þ �1�þ�2�
2; (8e)

substitute these expressions into Eq. (7a), and retain terms
to Oð ffiffiffi

�
p Þ:

1þOð�Þ ¼ 1þ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � c1

p ffiffiffi
�

p þOð�Þ:
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For this to be satisfied, �1 ¼ c1 is required. Expanding
system (7) to leading order, we obtain

c1¼ i�1�
ffiffiffi
2

p h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��a1cosðu0Þ�a2cosðv0Þ

q
i; (9a)

a1þib1¼� ffiffiffi
2

p hcosðu0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��a1cosðu0Þ�a2cosðv0Þ

q
i; (9b)

a2þib2¼� ffiffiffi
2

p hcosðv0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��a1cosðu0Þ�a2cosðv0Þ

q
i; (9c)

where we have defined � ¼ �2 � c2 for convenience.
These three complex equations contain six variables: c1,

a1, b1, a2, b2, and �, and one parameter: �1. Practically, it
is easiest to parameterize the system by �, solve for a1 and
a2 by using the real parts of implicit Eqs. (9b) and (9c), and
then deduce the remaining values. This yields a set of
solutions corresponding to various types of chimera and
drifting states.

Results.—Figure 2 shows solutions to system (9). It
contains three closed loops connected by two branches.
The loops lie in the planes a1 ¼ 0, a2 ¼ 0, and a1 ¼ a2,
whereas the branches have a1 � a2 (both nonzero).
Because Eq. (5) is invariant under the transformations
ðd1; uÞ ! ð�d1; u� �Þ, ðd2; vÞ ! ð�d2; v� �Þ, and
ðd1; uÞ $ ðd2; vÞ, the quadrant with non-negative a1 and
a2 contains all of the distinct solutions to system (9),
and the loops satisfying a1 ¼ 0 and a2 ¼ 0 are essentially
the same.

The chimera states these solutions describe have locked
and drifting regions separated by a contour where R ¼ j�j.
Expressing this boundary in terms of the variables from
Eq. (8) yields

� ¼ a1 cosðuÞ þ a2 cosðvÞ: (10)

This boundary takes on various forms depending on the
values of a1, a2, and �.
When a1 ¼ 0 or a2 ¼ 0, system (7) reduces to the

equations analysed in Ref. [17]. The solutions along this
branch represent one-dimensional stripe chimeras—the
order parameter varies in only one spatial dimension.
One such chimera is displayed in Figs. 1(a) and 1(b).
Figure 3(a) describes the various solutions that are found
along this branch and indicates their stability. These
chimeras are qualitatively similar to those observed in
experiments [23].
When a1 ¼ a2, the boundary is symmetric about the line

u ¼ v and resembles a circle or a square. These chimeras

0
0.1

0.2

0

0.1

0.2

0

0.1

0.2

δ

a1

a2

FIG. 2 (color online). Solutions to system (9). The inset dis-
plays the full set of solutions. The main panel shows the quadrant
containing only a1, a2 � 0. Loops correspond to symmetric spot
chimeras (a2 ¼ a1) and two types of equivalent stripe chimeras
(a1 ¼ 0 and a2 ¼ 0). Branches (a1 � a2, both nonzero) corre-
spond to two types of asymmetric spot chimeras: one with � > 0
and one with � < 0.

(a)

(b)

FIG. 3 (color online). Cross sections of Fig. 2. The magenta
(dash dotted) curves represent unstable chimeras, the blue (solid)
curves represent stable chimeras, the green (dashed) curves
correspond to modulated drift states, and the red (solid,
a1 ¼ 0) curves correspond to uniform drift states. Panel
(a) displays the stripe chimera loop (a2 ¼ 0). Panel
(b) displays the symmetric spot loop (a1 ¼ a2). Note that curves
and labeled points were determined analytically, while stability
was evaluated numerically. Stability boundaries were observed
to correspond to labeled points.

PRL 110, 094102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

094102-3



consist of an incoherent spot surrounded by a coherent
region or a coherent spot surrounded by an incoherent
region, similar to those studied in Ref. [20]. An example
of such a state can be found in Figs. 1(c) and 1(d).
Solutions along this loop are described in Fig. 3(b).

When a1 � a2, the boundary resembles an ellipse or a
rhombus, both of which are asymmetric (they are not
invariant under reflections about the line u ¼ v). There
are two such branches: one with � > 0 and one with � < 0.
These solutions also have regions of incoherence surround-
ing or surrounded by coherence. Examples of these
previously undiscovered chimeras are found in Fig. 4.

We determined the stability of predicted chimera states
by numerically integrating Eq. (1) with initial conditions
determined by our theory. Stable chimeras remained very
close to the initial condition, confirming our analysis.
Figure 5 plots the fraction of oscillators in the drifting
region and the asymmetry of that region [defined as
minðja1=a2j; ja2=a1jÞ] as a function of �1. The stripe
chimera loop contains both stable and unstable domains
and is nearly identical to the solution curve described in
Ref. [17] [see Fig. 3(a)]. The symmetric spot loop also
contains both stable and unstable domains [see Fig. 3(b)]
and is similar in shape to the stripe chimera loop, but it has
differing stability regions. Both asymmetric branches are
unstable, and nearby states evolve within planes of fixed�1

to solutions along the stripe or symmetric spot loops.
Conclusions.—This work reveals a new type of chimera

state in a two-dimensional periodic space. These asymmet-
ric chimeras are unstable and appear in simulations only as
transients. Nonetheless, understanding where these asym-
metric chimeras appear is essential to understanding where

stripe and spot chimeras are stable. Stable chimeras are
created via continuous bifurcation off of modulated drift
states, while unstable chimeras appear via continuous
bifurcation off of the fully synchronized state. As �1

increases, symmetric and stripe loops intersect with asym-
metric branches, resulting in unexpected changes in stabil-
ity. Eventually, a stable chimera collides with an unstable
chimera, causing both to be destroyed in a saddle-node
bifurcation.
Our analysis reveals the complex regions of parameter

space in which two-dimensional chimeras reside. The
intricacy of bifurcation diagrams 3 and 5 elucidates why
it is difficult to reproduce chimera states in numerical
simulations and experiments: Stable chimeras exist only

(b)

(d)

(a)

(c)

FIG. 4 (color online). Asymmetric spot chimeras. Panels (a)
and (b) display an asymmetric chimera from the lower branch
with a1 ¼ 0:076 35, a2 ¼ 0:029 29, and � ¼ �0:026 08, while
(c) and (d) display an asymmetric chimera state from the upper
branch with a1 ¼ 0:2089, a2 ¼ 0:048 44, and � ¼ 0:1769.
Numerical integration reveals that these states are unstable.

(a)

(b)

FIG. 5 (color online). Dynamics of the fraction drifting and
asymmetry. Solid lines indicate stable states, while dashed lines
indicate unstable states. Red curve, symmetric spot chimeras;
blue curve, stripe chimeras; green curve, asymmetric spot chi-
meras (� > 0); purple curve, asymmetric spot chimeras (� < 0).
Unstable states evolve along planes of fixed �1 to nearby stable
states (with a different fraction drifting and/or asymmetry; see
the text for definition) as indicated by the arrows in panel (a).
Panel (b) contains a two-dimensional projection of panel
(a) showing the fraction drifting as a function of �1 for the
various chimeras. Note that fraction drifting was inferred ana-
lytically from Eq. (10), while stability and dynamical behavior
were determined numerically.
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for narrow ranges of the system parameters. Consequently,
small changes in the lag parameter � (or, equivalently, �)
can cause stable chimeras to vanish or new chimeras to
appear. This explains the disconnected observations of spot
chimeras in Fig. 4 of Ref. [20] and may explain the absence
of experimental spot chimeras in Ref. [23].

These findings also highlight the impact of topology on
equilibrium states. On a torus, single spirals are excluded by
the periodic boundaries—they are topologically impossible.
However, on an infinite plane, finite-sized nonspiral chime-
ras have not yet been observed and may not exist. Networks
of oscillators are often of interest and do not necessarily
reproduce the topological properties of any simple metric
space. We hypothesize that, on arbitrary networks of oscil-
lators with more complex structure [24], previously unob-
served chimeras are possible. Investigating these chimeras
may shed light on breakdowns of synchrony observed in
physical [23], chemical [22], and biological systems [15,25].
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