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Abstract
A chimera state is a spatio-temporal pattern in a network of identical coupled
oscillators in which synchronous and asynchronous oscillation coexist. This
state of broken symmetry, which usually coexists with a stable spatially
symmetric state, has intrigued the nonlinear dynamics community since its
discovery in the early 2000s. Recent experiments have led to increasing interest
in the origin and dynamics of these states. Here we review the history of
research on chimera states and highlight major advances in understanding their
behaviour.

Keywords: chimera state, synchronization, coupled oscillators, pattern
formation
PACS numbers: 05.45.Xt, 89.75.-k, 89.75.Kd, 05.65.+b
Mathematics Subject Classification: 34C15, 34C23, 35B36, 82C22, 82C44

(Some figures may appear in colour only in the online journal)

1. Background

In Greek mythology, the chimera was a fierce fire-breathing hybrid of a lion, a goat and a snake.
In the nonlinear dynamics community, however, ‘chimera’ has come to refer to a surprising
mathematical hybrid, a state of mixed synchronous and asynchronous behaviour in a network
of identical coupled oscillators (see figure 1).

Until about ten years ago, it was believed that the dynamics of networks of identical
phase-oscillators (dθi/dt = ω+coupling) were relatively uninteresting. Whereas coupled non-
identical oscillators were known to exhibit complex phenomena including frequency locking,
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Figure 1. Examples of chimera states. (a) Chimera state in a system of two point-
like clusters. (b) Chimera state in a one-dimensional periodic space (ring). (c) The
incoherent region for a spiral chimera state on a two-dimensional infinite plane. (d)
‘Spiral’ chimera state on a two-dimensional periodic space (sphere). (e) ‘Spot’ chimera
state on a two-dimensional periodic space (sphere). (f ) ‘Spot’ chimera state on a two-
dimensional periodic space (flat torus).

phase synchronization, partial synchronization and incoherence, identical oscillators were
expected to either synchronize in phase or drift incoherently indefinitely. Then, in November
2002, Japanese physicist Yoshiki Kuramoto (already well known for his paradigmatic model of
synchronization in phase oscillators [1–4]) and his collaborator Dorjsuren Battogtokh showed
that the conventional wisdom was wrong [5]. While investigating a ring of identical and non-
locally coupled phase oscillators, they discovered something remarkable: for certain initial
conditions, oscillators that were identically coupled to their neighbours and had identical
natural frequencies could behave differently from one another. That is, some of the oscillators
could synchronize while others remained incoherent [5]. This was not a transient state, but
apparently a stable persistent phenomenon combining some aspects of the synchronous state
with other aspects of the incoherent state5. Steve Strogatz later had the idea to dub these patterns
‘chimera states’ for their similarity to the mythological Greek beast made up of incongruous
parts [6].

Early investigations of chimera states prompted many questions. Were these patterns
stable? Did they exist in higher dimensional systems? Were they robust to noise and to
heterogeneities in the natural frequencies and coupling topology? Were they robust enough to
be observable in experiments? Could more complex patterns of asynchronous and synchronous
oscillation also be observed? Could the dynamics of these patterns be reduced to lower
dimensional manifolds? What are the necessary conditions for a chimera state to exist?

5 In many systems this state coexists with a stable fully-synchronized state—this long concealed its existence.
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During the last decade, many of these questions have been answered. We now know that,
for certain systems, though they are stable as the number of oscillators N → ∞, chimera
states are actually very long lived transients for finite N . Although the basins of attraction
for chimera states are typically smaller than that of the fully coherent state, chimera states
are robust to many different types of perturbations. They can occur in a variety of different
coupling topologies and are even observable in experiments.

In this review, we will highlight some important results pertaining to chimera states since
their discovery and explore potential applications of these unusual dynamical patterns.

2. What is a chimera state?

Abrams and Strogatz defined a chimera state as a spatio-temporal pattern in which a system of
identical oscillators is split into coexisting regions of coherent (phase and frequency locked) and
incoherent (drifting) oscillation. On their own, neither of these behaviours were unexpected.
Both incoherence and coherence were well documented in arrays of non-identical coupled
oscillators, but complete incoherence and partial coherence were usually stable at different
coupling strengths. It was believed that coexistence was only possible due to heterogeneities
in the natural frequencies. Nonetheless, Kuramoto and Battogtokh observed a chimera state
when all of the oscillators were identical. They considered the system:

∂

∂t
ψ(x, t) = ω(x) −

∫
G(x − x ′) sin(ψ(x, t) − ψ(x ′, t) + α) dx ′. (1)

with ω(x) = ω for all x.6 Apparently, only non-local/non-global coupling (non-constant G(x))
and non-zero phase lag α were required to observe coexistence of these divergent behaviours.
This result was particularly surprising because it occurred in regions of parameter space where
the fully coherent state was also stable. Thus, the symmetry breaking in the dynamics was
not due to structural inhomogeneities in the coupling topology. So where did this state come
from?

3. A simple example

To see why chimera states are possible, it is instructive to consider the simplest system where
they have been observed: a network with two clusters of N identical oscillators [7]. Because
they are identical and identically coupled, all oscillators are governed by the same equation,

dθσ
i

dt
= ω − µ

〈
sin(θσ

i − θσ
j + α)

〉
j∈σ

− ν
〈
sin(θσ

i − θσ ′
j + α)

〉
j∈σ ′

, (2)

where µ and ν represent the intra- and inter-cluster coupling strengths respectively (µ > ν >

0), σ and σ ′ indicate clusters X and Y (or vice versa) and 〈f (θσ
j )〉j∈σ indicates an average

over cluster σ (this is just N−1 ∑N
j=1 f (θσ

j ) for finite N ). When N → ∞, the phases in each

6 There is some ambiguity in how the integral in equation (1) should be evaluated. One possibility is that the equation
can be treated as an ‘abbreviation’ for the discrete Kuramoto model (see equation (15) with ε = 1). In this case, the
integral is replaced by a sum over a countable number of oscillators. Alternatively, one can interpret equation (1)
as if there were a distribution of oscillators at each point in space. In this case, the integral should be interpreted as∫

G(x − x′)
∫ 2π

0 sin(ψ(x, t) − ψ ′ + α)p(ψ ′, x′, t) dψ ′dx′ where p(ψ ′, x′, t) represents the probability distribution
of the phases and satisfies the continuity equation (see equation (3)—in other words, (1) is no longer sufficient to
describe the dynamics on its own).
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cluster have a probability density function pσ and the cluster average 〈f (θσ
j )〉j∈σ is defined as∫ 2π

0 f (θ ′)pσ (θ ′, t) dθ ′. These probability distributions must satisfy the continuity equation

∂pσ

∂t
+

∂

∂θ
(pσ vσ ) = 0, (3)

where vσ is the phase velocity given by equation (2), but with θσ
i replaced by a continuous θ

and sums replaced by integrals:

vσ (θ, t) = ω − µ

∫ 2π

0
sin(θ − θ ′ + α)pσ (θ ′, t) dθ ′ − ν

∫ 2π

0
sin(θ − θ ′ + α)pσ ′

(θ ′, t) dθ ′.

(4)

Equations (3) and (4) constitute a partial integro-differential equation for the distribution
of oscillators pσ (θ, t) in each cluster.

3.1. Ott–Antonsen reduction

In 2008, Edward Ott and Thomas Antonsen proposed a simplified approach to solving this
system [8]. They suggested expanding pσ in a Fourier series, and restricting analysis to
a particular low-dimensional manifold defined by an = an, where an is the nth Fourier
coefficient. They subsequently showed that this manifold is globally attracting for a broad
class of Kuramoto oscillators [9,10] such as those satisfying (1)7. Pazó and Montbrió recently
generalized this result by showing that Winfree oscillators (see section 5.2) also converge to
the Ott–Antonsen manifold [13].

We therefore consider distributions with the form

2πpσ (θ, t) = 1 +
∞∑

n=1

{[
aσ (t)eiθ

]n
+

[
a∗

σ (t)e−iθ
]n

}
. (5)

where the superscript ∗ denotes complex conjugation. Substitution of equation (5) into equation
(4) reveals that

vσ (θ, t) = ω − zσ eiα

2i
eiθ +

z∗
σ e−iα

2i
e−iθ (6)

where we have defined zσ (t) = µ〈eiθσ
j 〉j∈σ + ν〈eiθσ ′

j 〉j∈σ ′ = µa∗
σ + νa∗

σ ′ . Thus equation (3)
becomes

∞∑
n=1

[
cnei(n−1)θ + dneinθ + fnei(n+1)θ + c.c.

] = 1

2
z∗
σ eiαeiθ + c.c., (7)

where cn = 1
2 (n−1)zσ an

σ e−iα , dn = nan−1
σ ȧσ + inωan

σ , and fn = − 1
2 (n+ 1)z∗

σ an
σ eiα . Equating

coefficients of eiθ on the left and right-hand sides of (7) allows us to describe the dynamics of
a in each cluster as

daσ

dt
+ iωaσ +

1

2

[
a2

σ zσ e−iα − z∗
σ eiα

] = 0. (8)

7 This manifold is only globally attracting for oscillators with non-singular (e.g. Gaussian, Lorentzian or sech)
frequency distributions. For identical oscillators, the frequency distribution is a delta function, so the manifold is not
globally attracting [10]. However, Pikovsky and Rosenblum demonstrated that for particular constants of motion [11]
the dynamics evolve along the Ott–Antonsen manifold [12]. Thus the Ott–Antonsen ansatz is useful for characterizing
some of the dynamics even when oscillators are identical.
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3.2. Simplified governing equations

Equation (8) applies independently to each cluster. For convenience we define aX = ρXe−iφX

and aY = ρY e−iφY for clusters X and Y , respectively, then use equation (8) to find

0 = ρ̇X +
ρ2

X − 1

2
[µρX cos α + νρY cos (φY − φX − α)] , (9)

0 = − ρXφ̇X + ρXω − 1 + ρ2
X

2
[µρX sin α + νρY sin (φX − φY + α)] ,

with analogous equations for ρ̇Y and φ̇Y .
Chimera states correspond to stationary solutions with ρX = 1 and ρY < 1 (and vice

versa). Fixing ρX = 1, defining r = ρY and ψ = φX − φY , we obtain the following system of
equations for chimera states:

ṙ = 1 − r2

2
[µr cos α + ν cos(ψ − α)] , (10)

ψ̇ = 1 + r2

2r
[µr sin α − ν sin(ψ − α)] − µ sin α − νr sin(ψ + α) .

Solutions for and bifurcations of chimera states can now be found by analysis of the properties
of this simple two-dimensional dynamical system. An example of a chimera state in this
system (with r = 0.729 and ψ = 0.209 and 1024 oscillators per cluster) is displayed in panel
(a) of figure 1.

4. What’s known

4.1. Bifurcations of chimera states

Analysis of system (9) reveals a chimera state ‘life cycle’ as follows: when α = π/2, both
symmetric ρX = ρY states and asymmetric ρX �= ρY states are possible. In parallel with earlier
work [14], we refer to the symmetric states as ‘uniform drift’ and the asymmetric states as
‘modulated drift’ (where the descriptor indicates spatial uniformity or modulation—in both
cases the drifting oscillators behave non-uniformly in time). As α decreases from π/2, an
unstable chimera bifurcates off of the fully synchronized state, while a stable chimera state
bifurcates off the modulated drift state. Further decreasing α eventually results in a saddle-node
bifurcation8.

When the coupling disparity µ − ν becomes sufficiently large, chimera states can also
undergo a Hopf bifurcation. This causes the order parameter for the incoherent cluster to
oscillate, resulting in a ‘breathing’ phenomenon. The order parameter reiψ follows a limit cycle
in the complex plane, the diameter of which increases as µ−ν increases. At a critical value of
µ − ν that limit cycle collides with the unstable chimera state, resulting in the disappearance
of the ‘breathing’ chimera state through homoclinic bifurcation [7, 15].

These bifurcations are displayed in figure 2.

4.2. Chimeras on spatial networks

Chimera states have been analysed in a variety of different topological settings (see the
appendix), and the bifurcations described above appear to be generic. Thus far, chimeras
for traditional Kuramoto phase oscillators (as described by equation (1)) have been reported

8 A third unstable chimera bifurcates off of the unstable anti-synchronized state (r = 1, ψ = π ) as α decreases from
π/2 and it persists for all values of α. Note that the stability results described above are only valid for 0 < α < π/2.
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(a) (b)

Figure 2. Two-cluster chimera. (a) Origin of chimera state via bifurcation off of
modulated drift (green dotted) and uniform drift (red solid) states. Three chimera states
are shown: stable (blue solid) and unstable (magenta dashed) chimeras, both with ψ

near 0, and a second unstable chimera (black dashed) with ψ near π . The stable fully
synchronized state with ρX = ρY = 1, ψ = 0 and the unstable anti-synchronized
state with ρX = ρY = 1, ψ = π coincide in this projection and are indicated by the
cyan dashed–dotted line. Here equations (9) are used with µ = 0.625, ν = 0.375.
(b) Bifurcations of chimera state in parameter space of coupling strength disparity
µ − ν and phase lag α with µ + ν = 1. Red dashed–dotted line indicates saddle-
node bifurcation, blue solid line indicates Hopf bifurcation, green dashed line indicates
homoclinic bifurcation. Chimera states are detectable in between red dashed–dotted
line and green dashed line.

on a ring of oscillators [5, 6, 14, 16], a finite strip with no-flux boundaries [17], two- and
three-cluster networks [7, 18], and oscillators distributed along an infinite plane [19–21], a
torus [22, 23] and a sphere [15, 24].

Depending on the topology, two distinct classes of chimera states may appear: spots
and spirals. In spot chimeras, synchronous oscillators all share nearly the same phase while
incoherent oscillators have a distribution of phases. When phase is indicated by colour this
creates a ‘spot’ pattern where the coherent region is nearly monochromatic and the incoherent
region contains specks of many different colours9. Spots have only been reported for near-
global coupling with α near π/2. The drifting and locked regions in these systems each occupy
a finite fraction of the domain. Spot chimeras occur in every system studied with the exception
of the infinite plane. On the plane, any finite-sized spot would represent an infinitesimal
fraction of the domain, and as a result might be argued to be insignificant. Spots and/or stripes
with infinite size have not been reported at this time10.

On two-dimensional surfaces, spiral chimeras can also occur. These chimeras consist of
an incoherent core surrounded by rotating spiral arms that are locally synchronized. Along a
path around the incoherent core, the phases of coherent oscillators make a full cycle. Examples

9 This definition includes patterns with stripes as well as circular and irregularly shaped spots
10 Recent investigations by Kawamura [25] and Laing [26] have revealed stripe chimeras that appear in arbitrarily
large but finite networks. This strongly suggests that stripes with infinite size are also possible.
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of these types of patterns can be found in figure 1. Spiral chimeras have been reported
on a plane [18, 20, 27], a torus (in configurations of 4 or more spirals) [22, 28], and on a
sphere [15,24]. These spirals appear to be stable only when α is near 0, and when the coupling
kernel is more localized than for their spot counterparts.

4.3. Chimeras on arbitrary networks

Recently, the concept of a chimera state has been extended to networks without a clear spatial
interpretation. Thus far, the evidence for chimera states on these networks is largely numerical.
Shanahan considered a network consisting of eight communities of 32 oscillators. Oscillators
were fully coupled to other oscillators within the same community and connected at random
to 32 oscillators from the other communities. He observed fluctuations in both internal and
pairwise synchrony in the communities resembling chimera states [29].

Laing et al analysed a two-cluster system with randomly removed links. They observed
that chimera states are robust to small structural perturbations, but the ranges of parameter
values for which they exist become increasingly narrow as the number of missing links increases
[30]. Yao et al performed a similar analysis of chimera states on a ring and confirmed that
chimera states remain apparently stable after a small fraction of links have been removed [31].

Zhu et al took a slightly different approach to this problem. They considered randomly
generated Erdös–Rényi and scale-free networks of identical oscillators. In lieu of spatial
structure, they classified oscillators using their effective angular velocities and found that
certain oscillators became phase- and frequency-locked while other oscillators drifted. On
scale-free networks, the highly connected hubs were more likely to synchronize than less
connected oscillators. On Erdös–Rényi networks, all oscillators seemed equally likely to
remain coherent [32].

4.4. Stability of chimera states

Rigorous analysis of the stability of chimera states has proven to be elusive. In many papers,
when chimera states are referred to as stable, the authors simply mean that they are states that
persist in simulations with a finite duration and a finite number of oscillators. This heuristic
approach can be useful for identifying unstable states, but it is unable to differentiate between
stable states and long-lived transients.

The most successful analytical investigation of the stability of chimera states was carried
out by Omel’chenko in 2013. He examined a ring of oscillators described by equation (1)
and showed that a variety of stationary ‘coherence–incoherence’ patterns existed along the
Ott–Antonsen manifold. He then explored the stability of these solutions with respect to
perturbations along this manifold by computing the point and essential spectra using the theory
of compact operators. He was able to demonstrate the existence of multiple pairs of stable and
unstable solutions for arbitrary piecewise smooth, even and 2π−periodic coupling functions
G(x). Thus, with an infinite number of oscillators, chimera states appear to be stable [33].

For finite networks of oscillators, numerical experiments suggest that chimeras states
on a ring are actually long-lived transients [34]. To show this, Matthias Wolfrum and Oleh
Omel’chenko considered a ring of oscillators with a finite coupling range R

dψk(t)

dt
= ω − 1

2R

k+R∑
j=k−R

sin
[
ψk(t) − ψj(t) + α

]
. (11)

They computed the Lyapunov spectrum of the system and show that it corresponded to a
‘weakly hyper chaotic trajectory’; however, as the system size increased, the chaotic part of
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the spectrum tended to 0. The lifetime of this transient trajectory grew exponentially with
the system size [34]. Omel’chenko et al also found that the incoherent regions in these
systems could drift when the number of oscillators was small, but that as the system grew,
this finite size effect disappeared [35]. There is numerical evidence that these conclusions
apply to other coupling schemes and non-identical frequencies, but this has not been shown
conclusively [34, 36].

Wolfrum and Omel’chenko along with Jan Sieber later showed that these chimera
states could be stabilized by implementing a control scheme with time-dependent phase lag
α(t) = α0 + K(r(t) − r0) where α0 and r0 correspond to the desired final phase lag and global
order parameter respectively [37].

5. Generalizations

Chimera states were first characterized on simple networks of identical Kuramoto-style phase
oscillators. However, these patterns can also be observed in networks with more general types
of oscillators.

5.1. Non-constant amplitude

In Kuramoto’s original paper, he observed chimera states with both non-locally coupled
Stuart–Landau oscillators11 (variable amplitude and phase) and with Kuramoto-style oscillators
possessing a fixed amplitude. It is straightforward to show that these systems are essentially
the same when the coupling is weak. To see this, consider the Stuart–Landau equation (the
complex Ginzburg–Landau equation without diffusion) with a coupling term described by the
operator LW(x, t):

∂

∂t
W(x, t) = (1 + ia)W(x, t) − (1 + ib)W(x, t) |W(x, t)|2

+ εe−iαLW(x, t),

where the vector x indicates the location in a space of arbitrary dimension. Let W(x, t) =
R(x, t)eiθ(x,t). After, dividing into real and imaginary parts and shifting into a rotating frame
of reference φ(x, t) = θ(x, t) − (a − b)t , we find that to leading order in ε

∂

∂t
R(x, t) = R(x, t) − R(x, t)3 + O(ε), (12)

∂

∂t
φ(x, t) = b(1 − R(x, t)2) + O(ε). (13)

Thus, there is a separation of time scales when ε is small. On the fast time scale, oscillators
approach a stable limit cycle with amplitude R(x, t) ≈ 1 where deviations are order
ε or smaller. After fixing R(x, t) = 1, on the slow time scale, the dynamics can be
expressed in terms of φ(x, t). For the particular case of non-local coupling LW(x, t) =∫
S
G(x − x′)W(x′, t) dx′ − W(x, t), where G(x) represents a coupling kernel, the phase

equation becomes (to lowest order)

∂

∂t
φ(x, t) = ω − ε

∫
S

G(x − x′) sin(φ(x, t) − φ(x′, t) + α) dx′, (14)

11 Note that there is some ambiguity in the literature regarding what is referred to as a Stuart–Landau oscillator and
what is a Ginzburg–Landau oscillator.
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where ω = ε sin α. This is the continuum Kuramoto model. Discretizing the domain and
defining Kij = G(xi − xj ), we obtain the more familiar discrete formulation

∂

∂t
φi(t) = ω − ε

N

N∑
j=1

Kij sin(φi(t) − φj (t) + α). (15)

Most of the literature on chimera states deals with Kuramoto oscillators, however, it
appears that coupled Stuart–Landau oscillators behave similarly [38]. For example, Carlo
Laing considers a generalization of the two-cluster chimera for Stuart–Landau oscillators. He
shows that the expected bifurcations persist even when the amplitude of oscillation is allowed
to vary [39].

Kuramoto and Shima demonstrated that spiral chimeras can also be sustained by Stuart–
Landau oscillators on a plane. They considered the standard non-locally coupled complex
Ginzburg–Landau equation and reported that with a coupling kernel G(x) ∝ K0(x/

√
D)

(where K0 is a modified Bessel function of the second kind) it was possible to observe spiral
waves surrounding an incoherent core [19].

The additional degree of freedom for Stuart–Landau oscillators can allow for more
complex dynamics as well. Bordyugov, Pikovsky and Rosenblum considered a ring of
oscillators with length 2� governed by the equation

∂A

∂t
= (1 + iω)A − |A|2 A + εZ, (16)

where Z = Beiβ0 eiβ1|B|2 , B = ∫ �

−�
G(x − x ′)A(x ′, t) dx ′ and G = ce−|x|. This represents

non-local coupling with phase lag that varies in space (and with amplitude). The authors
explored the role of the coupling distance relative to the system size and observed a parameter
regime where the synchronized state was unstable and where chimera states appeared
spontaneously. In addition to traditional chimera states, the authors reported the existence
of ‘turbulent chimeras’ in which regions of local synchronization appeared and vanished
seemingly randomly over time [40].

Zakharova et al studied asymmetrically coupled Stuart–Landau oscillators and
demonstrated that increases in the coupling range can lead to chimera death, a phenomenon in
which a chimera state breaks down and all oscillation ceases [41].

5.2. Winfree model

The Kuramoto model can also be derived as a special case of the Winfree model [42, 43]. To
see this, consider the Winfree model with a pulse shape P(θ) and response curve Q(θ)

d

dt
θi = ωi +

ε

N
Q(θi)

N∑
j=1

P(θj ). (17)

When the coupling is sufficiently weak and the oscillators are nearly identical, the phase
can be replaced by its average over an entire period, yielding

d

dt
θ

avg
i = ωi +

ε

N

N∑
j=1

1

2π

∫ π

−π

Q(θ
avg
i + λ)P (θ

avg
j + λ) dλ. (18)

The integral can be evaluated for a variety of smooth functions P and Q; it is especially simple
for sinusoidal Q and peaked P . As an example, take Q(θ) = − sin(θ +α) and P(θ) = 2πδ(θ).
By the sifting property of the Dirac delta function,

−
∫ π

−π

sin(θ
avg
i + λ + α)δ(θ

avg
j + λ) dλ = − sin(θ

avg
i − θ

avg
j + α),
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and thus the Winfree model simplifies to

d

dt
θ

avg
i = ωi − ε

N

N∑
j=1

sin(θ
avg
i − θ

avg
j + α), (19)

which is just the familiar Kuramoto model. The Kuramoto model can also be derived for a
variety of smooth finite pulse functions P(θ).

In a 2014 publication in Physical Review X, Pazó and Montbrió demonstrated that Winfree
oscillators also have solutions on the invariant manifold proposed by Ott and Antonsen [8].
This allows for a reduction to a system of three ordinary differential equations for a two-cluster
network and two integro-differential equations for networks with non-local coupling. For
Kuramoto oscillators, this development opened up the possibility of analytically characterizing
chimera states. It remains to be seen whether many of the subsequent results for chimera states
can be generalized to Winfree oscillators [13].

5.3. Non-identical oscillators

Although symmetry breaking phenomena like chimera states are particularly surprising when
the oscillators are identical, these patterns are certainly not unique to identical oscillators. In
2004, Montbrió et al reported the coexistence of coherence and incoherence in the two-cluster
network of oscillators with a Lorentzian frequency distribution. Unlike the homogeneous
case, coexistence was possible for all values of α [44]. Later, Carlo Laing performed extensive
analysis on the two-cluster network, one-dimensional ring, and infinite plane and showed that
key results pertaining to chimera states in those systems could be generalized to oscillators
with heterogeneous frequencies [45,46]. He demonstrated that these heterogeneities can lead
to new bifurcations allowing for alternating synchrony between the distinct populations over
time. He also showed that chimera states are robust to temporal noise [47].

5.4. Inertial oscillators

Chimera states are possible in systems with inertia as well. Bountis et al studied a variation
on the two-cluster network with non-identical phase oscillators, motivated by equations for
coupled pendula. They found that chimera states continued to appear in simulation as long as
the inertial terms were small. In addition, they observed that chimera states ceased to exist
when the magnitude of the first derivative term (representing dissipation) dropped below a
critical threshold [48].

5.5. Return maps

Chimera states occur in another third type of oscillatory system: iterated maps. Iryna
Omelchenko et al showed that a ring of coupled chaotic maps can exhibit chimera-like
phenomena [49]. They considered the system

zt+1
i = f (zt

i ) +
σ

2P

i+P∑
j=i−P

[
f (zt

j ) − f (zt
i )

]
, (20)

where zt
i is analogous to the phase of oscillator i at step t and f is the logistic map

f (z) = 3.8z(1 − z). Depending on the coupling distance P and coupling strength σ ,
they observed fixed points consisting of regions of synchrony separated by narrow bands
of incoherence.
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6. Experiments

For an entire decade, chimera states were observed only in numerical simulations. Many
of these chimeras required carefully chosen initial conditions and seemed to be sensitive to
perturbations. So, it was unclear whether chimera states were robust enough to be observed in
experiments.

Then in July 2012, this question was answered definitively when two successful
experimental chimeras, one at West Virginia University and the other at the University of
Maryland, were reported in Nature Physics [50,51]. The first group, led by Kenneth Showalter,
used the Belousov–Zhabotinsky reaction to create a realization of a two-cluster chimera similar
to the one reported in [7]. They divided a population of photosensitive chemical oscillators
into two separate groups and used light to provide feedback for the reactions. Oscillators
were weakly coupled to the mean intensity of the oscillators within the opposite group and
more strongly coupled to the intensity of other oscillators within the same group with a fixed
time delay. They observed a variety of dynamical patterns including complete synchronization,
synchronized clusters and chimera states in which only one of the two groups synchronized [50].
They later carried out a similar experiment on a non-locally coupled one-dimensional ring of
oscillators and observed a variety of chimera-like patterns resembling those seen in theoretical
studies [52].

Simultaneously, Thomas E Murphy, Rajarshi Roy and graduate student Aaron M
Hagerstrom designed a coupled map lattice consisting of a spatial light modulator controlled by
a computer with feedback from a camera. This was essentially a realization of the chaotic maps
studied by Omelchenko et al [49]. Roy’s group reported chimeras on both one-dimensional
rings and two-dimensional lattices with periodic boundaries [51].

One critique of these experiments was their reliance on computers to provide coupling
between the oscillators and maps [53]. However, these concerns were addressed by a third
experiment that relied on mechanical coupling alone. Erik Martens and his colleagues placed
metronomes on swings coupled by springs. The vibrations of the swings provided strong
coupling between oscillators on the same swing, and the springs weakly coupled metronomes
on opposite swings. By varying the spring constant they were able to observe chimera states
along with the expected in-phase and anti-phase synchronous states [54].

More recently, a group in Germany has observed chimera states that form spontaneously
in a photoelectrochemical experiment. They model the oxidation of silicon using a complex
Ginzburg–Landau equation with diffusive coupling and nonlinear global coupling. Schmidt
et al report that in numerical simulations and experiments, the thickness of an oxide layer
exhibits coexisting regions of synchronous and asynchronous oscillation [55].

7. Possible applications

Chimera states have not been conclusively determined to exist outside of laboratory settings,
but there are many natural phenomena that bear a strong resemblance to chimera states and
may be linked to these types of dynamics.

7.1. Unihemispheric sleep

Many species including various types of mammals and birds engage in unihemispheric slow-
wave sleep. In essence, this means that one brain hemisphere appears to be inactive while
the other remains active. The neural activity observed in EEGs during this state reveals high-
amplitude and low frequency electrical activity in the sleeping hemisphere, while the other
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(a) (b)

Figure 3. Spiral Waves. (a) A spiral wave on the surface of a human heart. Reproduced
with permission from [61]. © IOP Publishing & Deutsche Physikalische Gesellschaft.
CC BY-NC-SA. (b) A spiral wave chimera state on the surface of a sphere.

hemisphere is more erratic [56]. The chimera states observed in [7] can be interpreted as a
model of coordinated oscillation in one hemisphere and incoherent behaviour in the other.
Typically, these activity patterns alternate between hemispheres over time. Ma, Wang and Liu
attempted to reproduce this alternating synchronization. They considered the model

dθσ
i

dt
= ωi +

2∑
σ ′=1

Kσσ ′

Nσ ′

Nσ ′∑
j=1

sin(θσ ′
j − θσ

i − α) + A sin �(t − τσ ) (21)

and found that if τ1 �= τ2 (different reactions to environmental forcing), for appropriate choices
of coupling strengths periods of coherence and incoherence alternated in each hemisphere [57].

7.2. Ventricular fibrillation

Ventricular fibrillation is one of the primary causes of sudden cardiac death in humans. This
phenomenon results from a loss of coordination in the contractions of cells within the heart.
During fibrillation, spiral wave patterns can form [58–60]. At the centre of these rotating
patterns, there is a phase singularity and the dynamics are unclear. The contractions near
this singularity may be uncoordinated. These types of patterns are also observed in coupled
oscillators arranged on the surface of a sphere. In these arrays, when the phase lag is non-zero,
a finite fraction of oscillators at the centre of the spiral wave remain incoherent. Thus, spiral
wave chimeras may be viewed as a model for the patterns formed by the contractions of heart
cells during ventricular fibrillation (figure 3).

7.3. Power grid

The US power grid consists of many generators producing power at a frequency of about 60 Hz.
Under ideal conditions, the generators are synchronized. Synchronization of a power grid is
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often studied using Kuramoto-like models (e.g. [62–65]). Analysis of these models has shown
that a variety of perturbations to the network can cause full or partial desynchronization, which
may lead to blackouts. Knowledge of the possibility of chimera states in power distribution
networks—and the chimera state basins of attraction—could be useful for maintaining stable
and robust synchrony.

7.4. Social systems

Chimera-like states may also be possible in social systems. González-Avella et al examined
a model for the dissemination of social and cultural trends. They observe that coupled
populations can exhibit chimera-like patterns in which consensus forms in one population
while the second population remains disordered [66].

7.5. Neural systems

Chimera states bear a strong resemblance to bump states observed in neural networks—
localized regions of coherent oscillation surrounded by incoherence (see, e.g., [29, 45, 67–69]).
In certain models, they appear to form when fronts between regions of coherence and
incoherence collide [26]. Bumps appear to be stable in networks of delay-coupled Kuramoto
oscillators and in more complex models of neural oscillators. For example, Laing and Chow
studied networks of integrate-and-fire neurons, a type of pulse-coupled oscillator. They
observed solutions with a spatially dependent firing rate. Outside of the bump oscillators do
not fire and inside they fire asynchronously [68]. Chimera-like patterns have also been reported
for non-locally coupled Hodgkin–Huxley oscillators [70], FitzHugh–Nagumo oscillators [71],
leaky integrate-and-fire neurons [72], in the lighthouse model [73], and in many other neural
network models [67, 74].

There is observational evidence of chimera-like states in electrical brain activity. Tognoli
and Kelso report that, during studies where participants were asked to coordinate left and right
finger movement with a periodically flashing light, EEGs reveal clusters of coordinated and
uncoordinated activity [75].

8. Open questions

Over the last 12 years many significant advances in our understanding of chimera states have
been made. Nonetheless, some important questions have yet to be answered conclusively.

8.1. How does the phase lag affect the dynamics?

The Kuramoto model is often written in terms of a coupling phase lag parameter α:

∂

∂t
φi(t) = ω − ε

N

N∑
j=1

Kij sin(φi(t) − φj (t) + α). (22)

There are two natural interpretations for this parameter. First, the phase lag can be interpreted
as an approximation for a time-delayed coupling when the delay is small [76]. To see this,
consider the system

∂

∂t
φi(t) = ω − ε

N

N∑
j=1

Kij sin(φi(t) − φj (t − τ)). (23)
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When τ � 2π/ω and ε sufficiently small,

φj (t − τ) ≈ φj (t) − τ
dφj (t)

dt
≈ φj (t) − τ(ω + O(ε))

≈ φj (t) − α where α = τω.

Thus phase lag can be thought of as a proxy for time delay that allows us to replace a system
of an effectively infinite-dimensional delay differential equations with a system of ordinary
differential equations. Further examination of this point (as well as the loss of generality
inherent in sinusoidal coupling) is found in [76].

A second interpretation can be seen by observing that the coupling term can be rewritten as

N∑
j=1

Kij sin(φi − φj + α) = cos(α)

N∑
j=1

Kij sin(φi − φj )

+ sin(α)

N∑
j=1

Kij cos(φi − φj ).

When α = 0, only the sine coupling remains. In this case, complete synchronization
is the norm. When α = π/2, pure cosine coupling results in an integrable Hamiltonian
system [11, 77]; this causes disordered initial states to remain disordered. Thus α determines
a balance between spontaneous order and permanent disorder.

As mentioned previously, spiral and spot chimeras appear in different regions of parameter
space. Stable spirals have been observed only when α is near 0 whereas spots only appear
when α is near π/2. Thus spots occur near the Hamiltonian limit and spirals appear near the
maximally dissipative limit12. This observation has yet to be explained from an analytical
perspective.

8.2. What new dynamics appear when delay coupling is introduced?

The Kuramoto model represents an idealization of the interactions between coupled oscillators
that might occur in natural systems. However, a more realistic model for these interactions
might incorporate time delays in addition to or instead of a phase lag. Adding time delay into a
model drastically increases the dimensionality of a system making analysis more challenging.
These additional degrees of freedom allow for more complex dynamics enabling even single
oscillators to exhibit intervals of coherent and incoherent oscillation [78]. For example, Ma
et al considered a two-cluster network with uniformly distributed time delays and phase lag.
They demonstrated that chimera states were robust to small delays. They also showed that
periodic forcing of the system can induce a chimera state in which the two clusters alternate
between coherence and incoherence out of phase with each other. This bears a resemblance to
the patterns of brain activity during unihemispheric sleep [57] (see also section 7.1 above).

Sethia, Sen and Atay examined the case of distance dependent delays on a ring of
oscillators. They showed that this type of coupling allows for ‘clustered’ chimera states in
which multiple regions of coherence are separated by narrow bands of incoherence [79].

Another type of chimera state was reported by Sheeba et al. They studied a two-cluster
network with time delay and reported that in addition to the traditional chimera states, one can
also observe ‘globally clustered’ chimera states in which the coherent and incoherent regions
span both clusters [80, 81].

12 Perturbations off of the fully synchronized state can be shown to decay most rapidly when α = 0.
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8.3. What are the necessary conditions for a chimera state?

For years it was hypothesized that non-local/non-global coupling and phase lag or time delay
were necessary for a chimera state to appear. However, recent results appear to contradict this
hypothesis.

Omel’chenko et al considered a system with global coupling and ‘spatially modulated’
time-delayed coupling and non-periodic boundaries. They showed that the spatial dependence
in the strength of the delay coupling is sufficient to induce both stable and unstable chimera
states that bifurcate from the coherent and incoherent states respectively and are destroyed in
a saddle-node bifurcation [82].

Ko and Ermentrout showed that chimera-like states were also possible when the coupling
strengths were heterogeneous. They considered a network of Kuramoto oscillators with global
coupling and non-zero phase lag, but with coupling strengths that followed a truncated power-
law distribution. They observed that, counter-intuitively, oscillators with weak coupling tended
to synchronize while strongly coupled oscillators remained incoherent [83].

Wang and Li examined a system with global coupling that was weighted by the frequencies
of heterogeneous oscillators. This allowed for both positive and negative coupling. In their
model, oscillators with negative natural frequencies remained incoherent while oscillators with
positive frequencies synchronized [84].

Schmidt et al studied an ensemble of Stuart–Landau oscillators with nonlinear mean-field
coupling. They found that oscillators spontaneously split into a coherent cluster, in which all
oscillators have the same amplitude and oscillate harmonically, and an incoherent cluster, in
which amplitudes and phases are uncorrelated. They also showed that similar results could be
observed in an experiment with electrochemical oscillators (see section 6) [55].

Sethia and Sen showed that mean-field coupling need not be nonlinear to allow for chimera
states. They investigated a system of Stuart–Landau oscillators coupled through the mean field
and found that oscillators can split into two groups: one exhibiting coherent oscillation and
another with incoherent oscillation of smaller amplitude [85].

Sethia and Sen also pointed out that Kuramoto had seen this behaviour in simulation
years earlier. In a 1993 paper with Nakagawa, long before chimera states in phase oscillators
were discovered, they observed synchronized and desynchronized clusters in globally coupled
Stuart–Landau oscillators. Although they did not delve into this phenomenon any further,
Nakagawa and Kuramoto did make the astute observation that with global coupling ‘the phase
diagram is extremely simple in the weak coupling limit [phase oscillators]; the oscillators are
either perfectly synchronized or completely independent . . . No complex behaviour such as
clustering and chaos can occur. . . However, the origin of clustering discussed below is different
because it comes from amplitude effects [71].’ It was not until 2014 that those findings were
connected to chimera states [85].

These results suggest that non-local/non-global coupling is not necessary for a chimera
state to appear. Instead, non-uniformity may be all that is needed. This can be induced through
variable coupling strength, non-constant phase lag or time delay, and by allowing for variation
in the amplitude of oscillation.

8.4. When are chimera states stable?

As mentioned in section 4.4, chimera states on a ring have been shown to be stable in the
limit N → ∞ [33]. For finite N , where the Ott–Antonsen approach (see section 3.1) is not
immediately applicable, no analytical stability results yet exist. However, strong numerical
evidence suggests that the chimera state on a ring is an extremely long lived transient for
N < ∞ [34].
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It is unknown to what degree these results can be generalized to other networks of
oscillators. Recent analyses of two-cluster (as in section 3) and multi-cluster systems suggest
that chimera states are stable with as few as two oscillators per cluster [86,87]. The discrepancy
between the stability of chimera states on a one-dimensional ring and chimera states on an
effectively zero-dimensional two-cluster network may result from the underlying network
configuration.

In higher dimensional (1D and above) spatially embedded networks with a finite number
of oscillators (like a ring), the boundaries between incoherence and coherence typically move
erratically throughout the space. The drifting synchronization boundaries allowed in these
systems may lead to an instability that is absent in clustered systems where drifting is precluded
due to the fact that the coupling structure determines the boundaries on the incoherent and
coherent regions. However, this hypothesis has yet to be confirmed analytically. In arbitrary
but finite networks without a clear spatial interpretation, it is unclear whether chimera states, if
they exist, would be stable or transient or even whether rigorous and general stability analysis
is possible.

8.5. Is the existence of chimera states related to resonance?

In their 2013 experiment involving two groups of metronomes on coupled swings, Martens
et al observed in-phase and anti-phase coherent solutions in which the oscillators on each
swing synchronized and each swing behaved as a single pendulum. These solutions occurred
in different regions of phase space separated by a band of chimera states. This band of chimeras
was centred around the resonance curve for the anti-phase eigenmode. Martens et al theorized
that chimera states resulted from competition between the in-phase and anti-phase states and
that they were a type of resonance phenomenon [54]. It is unclear if this observation is due to
the fact that their model includes inertia, which is ignored in most phase-oscillator models, or
whether this result can be generalized.

In another intriguing paper, Kawamura considered a system of non-locally coupled
oscillators arranged along an infinite one-dimensional domain with parametric forcing [25].
He noticed that when the forcing frequency was nearly twice the natural frequency it was
possible for the oscillators in the left and right halves of the domain to synchronize locally
while remaining out of phase with oscillators in the other half. This resulted in a phase
discontinuity at the origin. For some parameter values, this discontinuity turned into a region
of incoherence, producing a chimera state. The fact that this occurred at twice the natural
frequency suggests that this result may also be related to resonance.

8.6. For what types of networks can chimera states exist?

The goal of making sense of the various incarnations of chimera states goes beyond just
deepening our understanding of this still-puzzling phenomenon. Recently, Nicosia et al
found an intriguing connection between network symmetries and partially synchronized states
for coupled oscillators [88]. All numerical simulations that show chimera states are in fact
represented in the computer as finite networks of some sort. If the theory for chimera states can
be extended to more general networks, the range of applicability will be greatly enhanced—
perhaps chimera state analogs exist on, e.g., the power grid, gene regulatory networks, and food
webs? Maybe these states have been seen, either in the real world or in simulation, but have
not been recognized or understood? If successful, a generalized theory connecting chimera
states to topology and ultimately network structure would be a valuable tool.
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9. Conclusion

Given that oscillation is a nearly universal dynamical behaviour for physical systems, it is
of fundamental interest to know just what can happen when oscillators are coupled together.
Kuramoto’s pioneering work in 2002 demonstrated that even networks of identical oscillators
can have unexpected and counter-intuitive dynamics. These chimera states went unnoticed
for decades due to their bistability with the spatially uniform states, but they have now been
seen in a diverse set of analyses, numerical simulations and experiments. The robustness of
these states and the diversity of the systems that are known to support them suggest that these
patterns may occur naturally in some physical systems. Should chimera states be found outside
of laboratory settings, identifying the types of interactions that can promote these behaviours
could have profound practical implications.
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Appendix A. Rough table of systems explored

Table A1. Rough summary of systems and coupling functions explored. Note that,
for compactness, notation is sometimes not identical to reference(s). x represents
distance between spatial positions in 1D, r represents distance between spatial positions
in 2D, dij represents shortest-path distance between nodes in a network, (u, v) represent
coordinates in 2D periodic space (torus). If not specified, oscillators studied are
Kuramoto phase oscillators. Two-cluster systems have stronger intra-cluster and weaker
inter-cluster coupling unless otherwise specified. ‘Top-hat’ coupling means constant
coupling strength to all oscillators within some distance and zero coupling to oscillators
beyond that distance.

Geometry Coupling Comments Ref.(s)

0D 1-osc. Time delay Virtual chimeras in fast time, FM
electronics experiment

[78]

0D 1-cluster and
2D plane

Nonlinear mean-field Stuart–Landau, Ginzburg–Landau
and experiment

0D 1-cluster Scale-free dist. of coupling strengths [83]
0D 1-cluster Frequency-weighted coupling

strengths, heterogeneous
frequencies

[84]

0D 1-cluster Mean-field Stuart–Landau oscillators [85]
0D 2-cluster Solvable [7]
0D 2-cluster Heterogeneous frequencies [44]
0D 2-cluster Winfree (pulse-coupled) oscillators [13]
0D 2-cluster Stuart–Landau oscillators [39]
0D 2-cluster Random connections [30]
0D 2-cluster Heterogeneous frequencies, noise [47]
0D 2-cluster Inertia [48]
0D 2-cluster Experiment (chemical oscillators),

delay
[50]
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Table A1. (Continued.)

Geometry Coupling Comments Ref.(s)

0D 2-cluster Experiment (mechanical oscillators),
inertia

[54]

0D 2-cluster Delay, forcing, asymmetry [57, 80, 81]
0D 2-cluster Agent-based model, random [66]
0D 2-cluster LIF neurons [72]
0D 3-cluster Triangle → chain [18]
0D 8-cluster Stronger intra-, weaker inter-cluster Random inter-cluster connections [29]
0D multi-cluster Arbitrary Examined validity of Ott–Antonsen

ansatz [8]
[12]

0D and 1D 2-cluster and G(x) ∝ 1 + A cos(x) Heterogeneous frequencies [45]
1D periodic G(x) ∝ exp(−κ|x|) First report of chimera state [5]
1D periodic G(x) ∝ exp(−κ|x|) Delay from signal prop. [79]
1D periodic G(x) ∝ 1 + A cos(x) [6, 14, 37]
1D periodic Both top-hat (G(x) = 1/2r, |x| � r ,

0 elsewhere) and exponential
(G(x) ∝ exp(−k|x|))

Attractive and repulsive coupling [16]

1D periodic G(x) ∝ exp(−|x|) Ginzburg–Landau oscillators [25, 38]
1D periodic G(x) ∝ exp(−|x|) Stuart–Landau oscillators [40]
1D periodic Top-hat Stuart–Landau oscillators [41]
1D periodic Top-hat [34–36]
1D periodic G(x) ∝ 1 + A cos(x) Random link removal [31]
1D periodic Arbitrary Existence and stability [33]
1D periodic Top-hat Return map (logistic) and Rössler

system
[49]

1D periodic G(x) ∝ exp(−α|x|) or G(x) ∝
exp(−α1|x|) + c exp(−α2|x|)

Hodgkin–Huxley neurons [70]

1D periodic Top-hat FitzHugh–Nagumo neurons [71]

1D line segment G(x) = 1+A cos(x)
2k+2A sin(k)

[17]

1D line segment Mean-field Stuart–Landau oscillators with
imposed stimulation profile, delay

[82]

1D line G(x) ∝ Ae−a|x| − e−|x| Lighthouse model neurons [73]
1D and 2D finite

size
G(x) ∝ exp(−|x|) and
G(r) ∝ K0(r)

Non-zero time delay [26]

1D periodic, 2D
plane

G(x) ∝ 1 + A cos(x), G(r) ∝ K0(r),
power-law distribution

Also examined delay, heterogeneous
frequencies

[46]

1D and 2D
periodic

Top-hat Experiment, return map [51]

2D plane G(r) ∝ K0(r/r0) Kuramoto, Ginzburg–Landau,
FitzHugh–Nagumo oscillators

[19, 20]

2D plane G(r) ∝ exp(−r2) Solvable [21]
2D plane Top-hat (radius R) [22, 28]
2D plane G(r) ∝ exp(−r) Rössler system [27]
2D periodic

(torus)
G(u, v, u′, v′) ∝

1 + κ cos(u − u′) + κ cos(v − v′)
2D analogue to [14] [23]

2D periodic
(sphere)

G(r, r′) ∝ exp(κr · r′) Both spots and spirals [15, 24]

Network Gij ∝ exp(−κdij ) Erdös–Rényi and scale-free [32]
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