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Abstract

Over the past 35 years there has been a near doubling in the worldwide prevalence of obe-

sity. Body Mass Index (BMI) distributions in high-income societies have increasingly shifted

rightwards, corresponding to increases in average BMI that are due to well-studied changes

in the socioeconomic environment. However, in addition to this shift, BMI distributions have

also shown marked changes in their particular shape over time, exhibiting an ongoing right-

skewed broadening that is not well understood. Here, we compile and analyze the largest

data set so far of year-over-year BMI changes. The data confirm that, on average, heavy

individuals become lighter while light individuals become heavier year-over-year, and also

show that year-over-year BMI evolution is characterized by fluctuations with a magnitude

that is linearly proportional to BMI. We find that the distribution of human BMIs is intrinsically

dynamic—due to the short-term variability of human weight—and its shape is determined by

a balance between deterministic drift towards a natural set point and diffusion resulting from

random fluctuations in, e.g., diet and physical activity. We formulate a stochastic mathemati-

cal model for BMI dynamics, deriving a theoretical shape for the BMI distribution and offering

a mechanism that may explain the right-skewed broadening of BMI distributions over time.

An extension of the base model investigates the hypothesis that peer-to-peer social influ-

ence plays a role in BMI dynamics. While including this effect improves the fit with the data,

indicating that correlations in the behavior of individuals with similar BMI may be important

for BMI dynamics, testing social transmission against other plausible unmodeled effects and

interpretations remains the subject of future work. Implications of our findings on the dynam-

ics of BMI distributions for public health interventions are discussed.

Introduction

Obesity is a risk factor for many chronic illnesses [1–3], and the obesity epidemic has become

one of the major public health concerns of our time [4, 5]. Understanding who becomes obese

PLOS ONE | https://doi.org/10.1371/journal.pone.0189795 December 18, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lang JC, De Sterck H, Abrams DM (2017)

The statistical mechanics of human weight change.

PLoS ONE 12(12): e0189795. https://doi.org/

10.1371/journal.pone.0189795

Editor: Natalia L. Komarova, University of California

Irvine, UNITED STATES

Received: July 11, 2017

Accepted: December 2, 2017

Published: December 18, 2017

Copyright: © 2017 Lang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files (NU.csv,

NHANES_SR.csv, NHANES_DM.csv, and

BRFSS_BMI.csv - see S2 Appendices Section

S2.3.2 for details) are available from the Dryad

database (TEMPORARY REVIEW LINK: http://

datadryad.org/review?doi=doi:10.5061/dryad.

7f140).

Funding: This work was supported by James S.

McDonnell Foundation (JSMF - https://www.jsmf.

org): award no. 22002023, awarded to Daniel M.

Abrams. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

https://doi.org/10.1371/journal.pone.0189795
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189795&domain=pdf&date_stamp=2017-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189795&domain=pdf&date_stamp=2017-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189795&domain=pdf&date_stamp=2017-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189795&domain=pdf&date_stamp=2017-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189795&domain=pdf&date_stamp=2017-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189795&domain=pdf&date_stamp=2017-12-18
https://doi.org/10.1371/journal.pone.0189795
https://doi.org/10.1371/journal.pone.0189795
http://creativecommons.org/licenses/by/4.0/
http://datadryad.org/review?doi=doi:10.5061/dryad.7f140
http://datadryad.org/review?doi=doi:10.5061/dryad.7f140
http://datadryad.org/review?doi=doi:10.5061/dryad.7f140
https://www.jsmf.org
https://www.jsmf.org


and why has direct implications in the quest for adequate public health interventions, for

example, to determine whether high-risk individuals or the whole population should be tar-

geted [6, 7]. The Body Mass Index (BMI), defined as the mass (in kilograms) divided by

the height (in meters) squared, is a standard measure of relative body weight used to classify

individuals as underweight (BMI� 18.5), normal weight (18.5< BMI� 25), overweight

(25< BMI� 30), or obese (BMI > 30). The distribution of BMIs in high-income societies is

right-skewed (i.e., skewed towards the high-BMI side) and the mean and standard deviation

(SD) have steadily increased over time [8–10]. The increasing mean of the distribution is the

result of ongoing society-wide shifts in lifestyle and nutrition, but the causes of the right-

skewness and broadening in time are debated [8, 10–12]. Fig 1, using national health survey

data in the United States provided by the Behavioural Risk Factor Surveillance System

(BRFSS) [13], illustrates that BMI mean and SD have both steadily grown since at least 1987

while the obesity epidemic was running its course (with tempered growth in more recent

years) [4, 5, 8, 10]. The third panel shows that the skewness of the distribution (where positive

skewness mean skewness to the right) has also steadily risen. The fourth panel shows that the

distribution has indeed shifted markedly to the right between, e.g., 1991 and 2011, and that

the distribution has broadened especially on the high-BMI right side (see S1 Video for BRFSS

BMI distributions from 1987–2013). Recent results show that this right-skewed broadening of

the distribution is not driven by socioeconomic and demographic factors since it occurs

equally within social and demographic subgroups [10]. Therefore, alternative explanations for

the broadening have been put forward that include variations in genetic susceptibility to obe-

sogenic environmental factors [10, 14], and the “runaway train” theory that BMI distributions

are right-skewed because high-BMI individuals become subject to a vicious self-reinforcing

cycle of weight gain [11, 12]. Also, uncertainty remains over the importance of external factors

such as microbial influence [15] or peer influence [16–19].

Here, we present a novel data set of BMI measurements for more than 750,000 individuals

receiving Chicago-area medical services [20], and a new mechanistic mathematical model for

BMI dynamics that is informed by the trends we identify in the data. We analyze year-over-

year BMI changes in the new data set and in a smaller existing survey data set, which leads to

observations on how the average and standard deviation of year-over-year changes in BMI

vary as a function of BMI. The data provides strong indications that human BMI distributions

are determined by a balance between deterministic drift towards a natural set point, and diffu-

sion resulting from random fluctuations in, e.g., diet and physical activity. The data shows that

low-BMI individuals on average increase their weight year-over-year, and high-BMI

Fig 1. Empirical mean, standard deviation, and skewness of the BMI distribution for BRFSS survey data. BMI mean, SD, and

skewness have steadily increased over the course of the obesity epidemic, with growth tempered in recent years. (a)-(c): dots show data

points, lines show show regression fits; (d): probability distributions for BMI in 1991 (red triangles show binned data, red solid curve shows

smoothed histogram) and 2011 (blue circles show binned data, blue dashed curve shows smoothed histogram).

https://doi.org/10.1371/journal.pone.0189795.g001

The statistical mechanics of human weight change

PLOS ONE | https://doi.org/10.1371/journal.pone.0189795 December 18, 2017 2 / 16

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189795.g001
https://doi.org/10.1371/journal.pone.0189795


individuals decrease their weight, with the increase/decrease being approximately linear in

BMI. We also find empirically that year-over-year BMI evolution is characterized by fluctua-

tions with a magnitude that is linearly proportional to BMI. These observations indicate that

fluctuations are an important factor in BMI dynamics, and we use this finding as an essential

part of the stochastic mathematical model we propose, in which the aggregate influence of fluc-

tuations is modeled as a random effect.

The effects we observe are in some sense expected: if human weight is dynamic on short

timescales and population distributions are in quasi-equilibrium at any given time, then BMI

distributions have to be characterized by a balance between drift towards the center of the dis-

tribution and diffusion that is an aggregate effect of multifactorial perturbations. However, as

far as we are aware these effects have not been studied and carefully quantified in large data

sets before, and their significance for the shape of BMI distributions has not been recognized

previously. Informed by the observations, in particular, that fluctuations are linearly propor-

tional to BMI, we formulate a simple stochastic model for BMI dynamics. Our model provides

some understanding of the observed drift-diffusion effects by relating them to known pro-

cesses from the obesity literature and to drift-diffusion mechanisms that are familiar from sta-

tistical mechanics applications in the physical sciences. The model then naturally leads to a

new mechanistic explanation for the observed right-skewed broadening of BMI distributions

over time, the cause of which is the subject of ongoing debate with implications for interven-

tion strategies. It can be noted here that understanding how this right-skewed broadening

occurs is also important because the broadening implies that the standard measure of obesity

(BMI> 30) may show larger increases, than, for example, increases in average BMI.

More generally, there is currently no quantitative mathematical model describing how indi-

viduals change weight over time, and how the behavior of individuals influences properties of

the distribution. Our model proposes a stochastic mechanism that is directly informed by the

dynamical effects we observe in the data, and can be related to effects that were previously

described in a qualitative manner in the BMI literature. The model closely replicates BMI data

from three independent data sets at both the level of individuals and populations. We also con-

sider an extended model to investigate the hypothesis that peer-to-peer social influence plays a

role in BMI dynamics. We note that our model differs from previous statistical studies [16, 17,

19, 21] that investigate the role of social and peer influences in that we propose an actual mech-

anism through which social and peer influences can affect dynamics of the BMI. Our model

also differs from previous compartmental [22, 23] and network [24, 25] mathematical models

in that our model proposes specific mechanisms and a derived BMI distribution that are

rooted in the dynamical effects we observe in the data. Similar to important population-level

models in mathematical biology such as the Susceptible-Infected-Recovered (SIR) epidemio-

logical model of Kermack and McKendrick [26], our model is simple in that it models the

entire population without regard to factors like age, gender, etc. While such factors are undeni-

ably important in understanding key aspects of the obesity epidemic, simple population-level

models can, like SIR, play an important role in identifying and quantifying major effects at

play across the population. The focus of this paper is to formulate such a population-level

mathematical model for BMI dynamics, grounded in observational data. At the same time, in

S1 Appendix we do confirm that the population-level effects we observe and model are also

present across differentiated age and gender categories.

The remainder of this paper is organized as follows. In the Data section we present our new

BMI data set and report on our findings regarding drift and diffusion in BMI distributions.

Informed by the dynamical effects identified in the new BMI data, we propose in the Methods

and mathematical models section a new stochastic mathematical model of BMI evolution for

individuals and populations, deriving a new theoretical shape for BMI distributions. In the
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Discussion section we discuss the implications of our findings in offering a mechanism to

explain the ongoing right-skewed broadening over time of BMI distributions in high-income

societies, and some implications for the debate on whether high-risk individuals or the whole

population should be targeted in public health interventions. Additional details on data sets

and the mathematical model are provided in S1 Appendix.

Data

For this work we require two different types of BMI data: population-level and individual-

level. At the population level we consider empirical BMI distributions over a population.

We compute empirical BMI distributions from three independently collected data sets: our

new data set of medical records for Chicago-area patients of the Northwestern Medicine

system of hospitals and clinics (NU) that we make freely available [20], and two publicly avail-

able data sets that derive from national health surveys in the United States, the National Health

and Nutrition Examination Survey (NHANES) [27], and the BRFSS [13]. At the level of indi-

viduals we consider the average change in individuals’ BMIs over time and the standard devia-

tion in the changes in individuals’ BMIs, both as a function of BMI (see Fig 2 and Fig A of

S1 Appendix). We can compute the temporal change in individuals’ BMIs from two indepen-

dently collected data sets: the new NU and the existing NHANES data sets. Our study and

model focus on BMI changes of individuals over short timescales, and in practice a suitable

timescale for which data on BMI change is available is of the order of about a year, since

Fig 2. Drift and diffusion in the short-term BMI dynamics of individuals in a human population. The figure shows the average annual

change in the BMI of individuals (blue dots), and the standard deviation of the annual change in the BMI of individuals (red triangles), as a

function of BMI, for data from our new large NU data set (left panel; 121,574 measurements for 2011) and from the publicly available

NHANES survey data set (right panel; 5,624 measurements for 2011–2012). The plots are obtained by binning empirical BMI differences.

The blue curves (dots) show that low-BMI individuals on average increase their weight year-over-year, while high-BMI individuals decrease

their weight on average, and the dependence on BMI is approximately linear. The red curves (triangles) show that the standard deviation of

annual BMI changes, which results from natural short-term fluctuations in an individual’s BMI that may be due to variations in diet or physical

activity, increases approximately linearly as a function of BMI. These results establish that BMI dynamics feature a drift towards a set point,

and a diffusion that is proportional to the BMI. The black curves are the curves of best fit for all data years to our mathematical models for the

drift term (Eq (2), including social effects) and for the diffusion amplitude (Eq (10)), as discussed in the Methods and mathematical models

section. Fig A of S1 Appendix repeats this analysis for the NU and NHANES BMI data split up by age range and by gender, confirming the

drift-diffusion dynamics identified here. Fig D of S1 Appendix repeats this analysis for the entire data set over all years, confirming the nearly

linear relations observed here.

https://doi.org/10.1371/journal.pone.0189795.g002
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multiple measurements typically exist for patients visiting hospitals on the time scale of a year,

and health survey data also often provide information on annual changes.

New data set: Northwestern Medicine medical records

As part of this study, we compile and present analysis of an entirely new BMI data set more

abundant than any previously reported. BMI measurements calculated from anonymized

medical records for more than 750,000 patients of the Northwestern Medicine system of hospi-

tals and clinics are considered from 1997 through 2014, with the majority of records coming

from later years. We calculate BMI from weight and height data for individuals in this data set

that are at least 18 years of age. We use these data to compute the empirical BMI distribution

for each year. In addition, we are able to calculate the change in BMI over one year for all indi-

viduals with patient records in consecutive years. Specifically, we extract from the Northwest-

ern Medicine medical record 1,017,518 measurements of year-over-year BMI change for

329,543 distinct individuals. We note that this data set provides the most abundant source of

individual level data. However, one caveat is that these data do not form a fully representative

sample of the population. For example, since these data are comprised of medical records they

may be biased toward less healthy individuals, subject to self-selection effects, etc. For this rea-

son, we carefully vet all our results and findings by cross-comparison with the NHANES and

BRFSS survey data, which can be assumed to be more representative of the US population.

Nevertheless, our new NU data are extremely valuable since they were recorded during actual

physical exams (unlike some of the survey interview data which were self-reported). They rep-

resent the largest data set of its type and allow us to conduct more detailed studies. For addi-

tional details on the NU data, see Section S1.1.1 of S1 Appendix.

Publicly available NHANES and BRFSS survey data

In S1 Appendix Sections S1.1.2–3 we describe the publicly available NHANES and BRFSS sur-

vey data. NHANES data are available for survey years 1999–2000, 2001–2002, . . ., 2013–2014,

and allow us to consider empirical BMI distributions based on approximately 5,000 adult indi-

viduals per year whose weight and height measurements were taken during a physical exam.

The NHANES data also provide self-reported change in BMI over the year preceding the sur-

vey interview. We consider BRFSS data for survey years from 1987 to 2013. The number of

individual records increases from approximately 50,000 in 1987, to more than 400,000 from

2007 onward. Weight and height measurements are self-reported. We use BRFSS data as a

third source for empirical BMI distributions, but the BRFSS data does not contain information

that allows us to infer annual BMI change for individuals.

Average and standard deviation of year-over-year BMI changes of

individuals

Fig 2 presents novel observations on BMI dynamics: on short timescales of about a year, the

BMIs of individuals in a human population show a natural drift on average towards the center

of the BMI distribution, and show diffusion (resulting from fluctuations due to multifactorial

perturbations) with an amplitude that is approximately proportional to the BMI. We demon-

strate this for measurements from two independent data sets: our newly compiled large NU

data set, compared with the much smaller but publicly available NHANES data set.

The blue dots in Fig 2 give the average annual change in the BMI of individuals as a func-

tion of BMI for a representative year (2011–2012 NHANES survey data and NU data for indi-

viduals with measurements taken in 2011 and 2012). The averages are taken over bins of

empirical BMI differences: BMI differences that originate from a similar starting BMI are

The statistical mechanics of human weight change

PLOS ONE | https://doi.org/10.1371/journal.pone.0189795 December 18, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0189795


placed in the same bin. Specifically, to generate Fig 2 we first compute average and standard

deviation of year-over-year BMI differences on the 90-point grid {10.5, 11.5, 12.5, . . ., 99.5}.

For each grid point the average and standard deviation of year-over year BMI differences

are taken over the bin containing all BMI differences with initial BMI within � ¼ 1

2
of the

grid point. For the 2011–2012 NU data there are 121,574 individual BMI difference measure-

ments and each bin (associated with a point in the grid {10.5, 11.5, . . ., 99.5}) contains on aver-

age 1,350 BMI differences. For 2011–2012 NHANES data there are 5,624 individual BMI

difference measurements and each bin contains on average 62 BMI differences. Fig A of

S1 Appendix repeats this analysis for the NU and NHANES BMI data split up by age range

and by gender, confirming the drift-diffusion dynamics identified here. In Section S1.2 of

S1 Appendix we explain how we fit the parameters of our stochastic model described in the

Methods and mathematical models section to the observed data (black curves in Fig 2).

Interpretation in terms of a drift-diffusion mechanism

Fig 2 shows the distinctive trend that on average low-BMI individuals increase their weight

year-over-year, while high-BMI individuals decrease their weight on average (blue dots), with

the increase/decrease being approximately linear in BMI. This lends quantitative support to

the BMI set point hypothesis: the intrinsic dynamics of weight change in healthy adults are

thought to follow a “return to equilibrium” pattern where individuals tend to fluctuate about a

natural equilibrium, or “set point” [28–30]. The red triangles in Fig 2 show, in a striking man-

ner, that the SD of annual BMI changes increases approximately linearly with BMI. The varia-

tion in annual BMI change results from the aggregate in short-term fluctuations that may be

due to variations in, e.g., diet and physical activity, and other effects. For the NHANES data, a

clear nearly-linear relation can be observed in the SD for a BMI of up to about 35–40, but for

larger BMIs the number of data points is small and results become noisy. For the more exten-

sive NU data set, the near-linear relation can be observed up to a BMI of about 45. It has to be

noted, though, that for the NU data self-selection effects of return patients who may actively be

addressing a high BMI may have an influence. The observed nearly linear relation in the SD

over a large part of the BMI range is plausible: higher-BMI individuals are expected to lose or

gain more weight when subjected to perturbations such as a diet [28], for biological reasons

[8, 12]. For further analysis and comparison, we repeat Fig 2 (with 2011–2012 data) for the

entire data set over all years in Fig D of S1 Appendix. Fig D of S1 Appendix confirms, for the

entire data set, the nearly linear relations for the annual change and its standard deviation that

were identified in Fig 2 for data years 2011–2012. Due to increased data size, the curves for the

entire data set are less noisy. Fig D of S1 Appendix also shows that the standard deviation

appears to grow faster than linear for large BMIs greater than about 45, both for the NU patient

data and the NHANES population data (which is still noisy for the largest BMIs).

While high-BMI individuals decrease their weight on average, they are subject to BMI fluc-

tuations with an amplitude (the SD) that is greater than the average decrease in their BMI

(Fig 2). The drift towards the center of the BMI distribution is balanced by these fluctuations,

and the fluctuations broaden the distribution away from the center. This can be understood in

analogy with well-known processes from the physical sciences. For example, a massive Brown-

ian particle under the influence of friction due to collisions with molecules in the surrounding

medium [31] follows a deterministic path, but at the scale of large populations the collisions

between molecules and Brownian particles can be modeled as random fluctuations. The veloc-

ity distribution of the Brownian particles can be described accurately by a balance between

deterministic drift towards zero velocity (due to friction) and a stochastic diffusion process

that models random noise (as described by the Ornstein-Uhlenbeck process [31]), resulting in

The statistical mechanics of human weight change
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a Gaussian velocity distribution at equilibrium. In a similar manner our observations from

Fig 2 imply that the BMI distribution is intrinsically dynamic, due to the short-term variability

of human weight, and can be described, in first approximation, as the result of a balance

between deterministic drift and random diffusion. This is unlike, e.g., the adult height distribu-

tion in a human population, which is essentially static on timescales of about a year (because

adult height hardly changes) and is nearly normally distributed, as opposed to the strongly

skewed distributions that are observed for BMI. We now proceed to describe this drift-diffu-

sion balance for BMI distributions quantitatively using a stochastic mathematical model.

Methods and mathematical models

We model the temporal evolution of the BMI xi of an individual i by the Langevin equation

[31]

dxi

dt
¼ aðxiÞ þ bðxiÞ ZðtÞ ; ð1Þ

where t is time, a(xi) is a drift (or advection) term and b(xi)η(t) forms a random diffusion term

(η(t) represents Gaussian white noise). Since the mean of dxi is given by E½dxi� ¼ aðxiÞdt and

the variance of dxi by E½dx2
i � � E½dxi�

2
¼ bðxiÞ

2dt, the average of changes in the individual’s

BMI per time interval dt follows the drift term a(x), and the SD of BMI changes follows b(x).

Modeling drift dynamics

We model the drift term by

aðxiÞ ¼ kI ðx? � xiÞ þ kS Gðxi;~x; sÞ: ð2Þ

The first term in Eq (2) represents intrinsic set point dynamics, describing the theory that

individuals tend to fluctuate about a natural equilibrium x? [28–30]. Our observations of mean

annual BMI change in Fig 2 suggest a linear relationship with slope kI * 0.1yr−1 as a suitable

initial approximation.

In an extension of our basic model we consider the second term of a(xi) in Eq (2), which

models the extrinsic social influence that individuals may exert on each other, and we base it

on the homophily-motivated assumption that individuals interact most strongly with others

that are similar [32–34]. We incorporate this effect because our large new data set offers us the

opportunity to investigate the hypothesis that peer-to-peer effects influence BMI dynamics

[16, 17, 19]. In the second term, kS is a rate constant and Gðxi;~x; sÞ is derived from Gaussian

interaction kernels with SD σ that model the influence between individual i and the other indi-

viduals represented by~x, as explained in more detail below.

Modeling intrinsic set point dynamics. More specifically, the intrinsic dynamics of

return to a set point weight is modeled by assuming exponential decay to equilibrium as

dxi

dt
¼ kIðx

?

i � xiÞ ; ð3Þ

where x?i represents the individual’s BMI set point, and the constant kI > 0 determines the rate

of exponential relaxation to equilibrium weight (note that we assume constant height in adults

over time, so changes in BMI—defined as the ratio of weight to height squared—are propor-

tional to weight changes). This set point weight may depend upon many factors including

genetics, average exercise and eating habits, etc. Though the set point may vary gradually over

the course of an individual’s life, we approximate it as a constant on the shorter time scale over

which our model applies. In addition, to obtain tractable models, we assume in most of our
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approach that individuals have a common set point x?. This is a reasonable first approximation

as indicated by the curves of average annual BMI change in Fig 2, which shows that there is a

nearly linear variation with an intersection point of the curve that is relatively clearly defined.

(Section S1.2.1 of S1 Appendix comments on extending aspects of our model to non-constant

set points x?.)
Another way to deduce this same model for intrinsic set point dynamics is to assume that

individuals tend to maximize some individual utility function uI(x) = uI(x; x?), which by

assumption must have a local maximum when BMI x = x? and can be modeled in first approxi-

mation by a quadratic as in

uIðxÞ ¼ �
1

2
k2ðx � x?Þ2: ð4Þ

Assuming that the rate of change of BMI will be proportional to the rate of increase of utility,

dx
dt
¼ k0

2

duI

dx
; ð5Þ

we arrive at the same intrinsic dynamics as model (3) (Eqs (3) and (5) are identical when

kI ¼ � k0
2

k2).

Modeling extrinsic social influence dynamics. The second term in Eq (2) models the

extrinsic, peer-to-peer social part of the drift dynamics. Some theories suggest that individuals

can become accustomed to the average BMI of peers under exposure to different peer environ-

ments [32, 33] and, to reduce disparity, may adjust their weights [34, 35]. We assume that

there exists some social utility function uSðxÞ ¼ uSðx;~xpeerÞ which captures this proposed peer-

influence phenomenon: the social utility should peak when an individual reaches a BMI con-

sistent with his or her peer(s),~xpeer, where~xpeer is a vector containing the BMIs of the peers.

Similarly to the intrinsic dynamics, we expect this utility to be well approximated, for the case

of a single peer, by a quadratic function (at least locally) and therefore propose

vðx; xpeerÞ ¼ �
1

2
k3ðxpeer � xÞ2 ; ð6Þ

where we assume that k3 > 0 is a constant, and where xpeer is the BMI of some peer who influ-

ences the individual under consideration. When multiple peers simultaneously influence an

individual, the net social utility becomes

uSðxiÞ ¼ uSðxi;~xÞ ¼ �
1

2
k3

XN

j¼1

Aijðxj � xiÞ
2
;

where N is the number of individuals in the population,~x ¼ ðx1; x2; . . . ; xNÞ
T
, and Aij repre-

sents the strength of social influence of individual j on individual i. Note that we use v to

denote the social influence of a single peer and u for the cumulative effect of multiple peers.

In order to specify Aij we make the homophily-motivated assumption that individuals with

similar BMI interact more strongly than individuals with different BMI [32–35]. Consistent

with this assumption, we choose a Gaussian interaction kernel

Aij ¼
1

N
�xi ;s

xj

� �
; ð7Þ

where N is the population size, σ> 0 is a fixed parameter, and ϕμ,σ(x) is the probability density

function of a normal random variable with mean μ and standard deviation σ evaluated at x.

This has the effect of imposing stronger interaction among more similar individuals.
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Combining both the intrinsic and extrinsic aspects of the proposed drift process, we obtain

dxi

dt
¼

d
dxi
ðuIðxiÞ þ uSðxiÞÞ ¼ aðxiÞ ð8Þ

where

aðxiÞ ¼ kIðx? � xiÞ

þkS

XN

j¼1

Aijðxj � xiÞ �
1

2

@Aij

@xi
ðxj � xiÞ

2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gðxi;~x ;sÞ

; ð9Þ

and the constants kI and kS = −k3 set the relative importance of individual versus social factors.

Note that the summation in Eq (9) corresponds to Gðxi;~x; sÞ in Eq (2).

It has to be noted here that the second term in Eq (9) was motivated by a social transmission

interpretation, but more broadly it can be interpreted as an extension of our base model that

adds the effect of correlations in the behavior of individuals with similar BMI. One hypothesis

that would lead to this kind of correlations is indeed social transmission, but there are other

possible effects that may result in such correlations. We mention two examples: food insecurity

[36, 37], which may affect individuals in a way that is correlated with their BMI, and gene-

environment interactions with certain genetic variants that are more common in people with

higher BMIs [38]. We will thus keep these alternative interpretations in mind when discussing

our results. Similarly, we emphasize that this is just one possible extension of the basic model,

and it is possible that other unmodeled effects are equally or more important.

Modeling diffusion dynamics

We model the diffusion amplitude b(xi) in Eq (1) as follows. Consistent with our observations

from Fig 2 that fluctuations in an individual’s BMI are roughly proportional to BMI, we take

bðxiÞ ¼
ffiffiffiffi
kb

p
xi ; ð10Þ

with constant kb > 0. Note that this is also consistent with the biological expectation that high-

BMI individuals tend to lose or gain more weight due to perturbations like a diet [8, 12].

Fokker-Planck equation and equilibrium distribution

In the limit of large population size N!1, the aggregate dynamics of individuals described

by Langevin Eq (1) are given by the population-level Fokker-Planck equation [31]

@p
@t
ðx; tÞ ¼ �

@

@x
½pðx; tÞaðxÞ� þ

1

2

@
2

@x2
½pðx; tÞb2ðxÞ�; ð11Þ

where p(x, t) is the probability density function for BMI x at time t. The correspondence with

the Langevin equation is exact when kS = 0 (no social effects), and we assume that it holds in

first approximation otherwise, since social effects are a relatively small correction to the domi-

nant linear trend of the drift term a(x).

We now derive an analytical solution for the BMI distribution under the simplifying

assumption that the BMI distribution is close to equilibrium. We thus obtain a closed-form

solution for the theoretical BMI distribution without social effects (kS = 0 in Eq (2)):

pð0Þeq ðxÞ ¼ c x� 2ðkI=kbþ1Þ exp � 2
kI

kb

x?

x

� �

; ð12Þ
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where c is a normalization constant given by

c� 1 ¼ 2x?
kI

kb

� �� 2kI=kb � 1

Gð2kI=kb þ 1Þ;

and GðtÞ ¼
R1

0
xt� 1exdx is the Gamma function.

The assumption of quasi-equilibrium is well justified if parameter values in our model drift

on a time scale slower than individual equilibration times, which we measure at roughly 7–17

years (based on kI * 0.06–0.14 from Table A in S1 Appendix). Such an assumption seems rea-

sonable for times before the recent onset of the obesity epidemic; after onset we expect the

approximation to be less accurate but that the resulting errors should still be small compared

to other sources of error. Further justification that the resulting quasi-stationary distribution is

a reasonable approximation is provided in Section S1.2.3 of S1 Appendix and in S1 Video,

where we compute numerical solutions to the time-dependent Fokker-Planck equation, fitted

to the observed data over all years, and find a good match with the analytic quasi-stationary

distribution of Eq (12) fitted year-by-year.

When social effects are included (kS 6¼ 0 in Eq (2)), no closed-form solution exists and the

equilibrium distribution must be calculated numerically (see Section S1.2 of S1 Appendix).

We note that since pð0Þeq ðxÞ � x� 2ðkI=kbþ1Þ as x!1, pð0Þeq ðxÞ becomes a scale-free (or power

law) distribution. Note that the linear assumption of Eq (10) also naturally implies a vital prop-

erty of the equilibrium distribution in our model, namely, that the probability is confined to

positive BMIs. Indeed, diffusion of probability is halted at x = 0.

Results

In Fig 3 we compare our new theoretical quasi-stationary BMI distributions with a candidate

distribution function that is commonly used to describe right-skewed data (such as BMI distri-

butions [8]): the log-normal probability distribution function

flogðx; m; sÞ ¼
1

x
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

ð logx � mÞ
2

2s2

� �

: ð13Þ

Because our model assumes that parameters are constant over short time scales, we fit each

year of empirical BMI distribution data separately from each other. For details on how we fit

empirical BMI distributions, see Section S1.2 of S1 Appendix.

Fig 3 shows that our non-social model (two parameters) gives a better fit to empirical BMI

distributions than the log-normal distribution (two parameters). Our social model (four

parameters) has the best fit. These findings are confirmed for publicly available data from the

NHANES [27] and BRFSS [13] surveys, see Fig B of S1 Appendix.

To investigate the importance of the social utility contribution to a(x) in Eq (2) we compute

the relative likelihood ratios of all BMI distribution models using the Akaike Information Cri-

terion (AIC) [39], which quantifies the trade-off between goodness-of-fit and model complex-

ity (number of parameters). Table 1 indicates that our social model is a better fit to the data

than the nonsocial model for data year 2011 when taking into account the number of parame-

ters, especially for our large NU data set. For other data years than 2011 we obtain similar AIC

results. This lends some support to the hypothesis that correlations in the behavior of individu-

als with similar BMI play a role in individual BMI dynamics. As discussed before, in our

extended model the interaction term of a(x) in Eq (2) was included to represent social trans-

mission [16, 17, 19], but it can more broadly be interpreted as a term that adds the effect of cor-

relations in the behavior of individuals with similar BMI, such as may occur due to food
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Fig 3. Results from fitting the 2011 NU empirical BMI distribution (black dots) to our predicted

distributions pð0Þeq ðxÞ (no social effects; red solid) and peq(x) (with social effects; red dashed), and to a

standard log-normal (blue dash-dotted) distribution. From top to bottom, the first panel illustrates how the

BMI distribution results from a balance between drift and diffusion, and is right-skewed. The second panel

shows the same BMI distributions in log scale to make tails more visible, and the third panel shows differences
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insecurity [36, 37] or certain gene-environment interactions [38]. Our results thus appear to

indicate that such correlations in the behavior of individuals with similar BMI may be impor-

tant. However, the interaction term in Eq (2) is just one possible extension of the basic model,

and it is possible that other unmodeled effects are equally or more important. Demonstrating

social transmission in a more direct way would require data that includes information about

peer BMI.

Discussion

A mechanism for right-skewed broadening of BMI distributions over time

Our findings on drift and diffusion in BMI dynamics (as in Fig 2), together with the associated

mathematical model, offer a new and compelling mechanism to explain the observed right-

skewness of BMI distributions [8, 10–12]: in essence, random fluctuations broaden the BMI

distribution away from the set point, and the broadening is stronger on the high-BMI side

because the random variations in BMI are proportional to BMI (Fig 2, red triangles). When

explaining the right-skewness, there is thus no need to invoke singular effects such as the “run-

away train” mechanism [11], in which high-BMI individuals become subject to a self-reinforc-

ing cycle of weight gain. In fact, we demonstrate that high-BMI individuals on average strongly
decrease their weight year-over-year (Fig 2, blue dots). However, they are subject to large-

amplitude fluctuations (with both positive and negative signs) that broaden the BMI distribu-

tion more on the high-BMI side than the low-BMI side. In S1 Appendix Section S1.2.6, we

explain similarly that increasing fluctuations over time also explain the broadening of BMI dis-

tributions over time especially on the high-BMI side [10, 12]. In particular, S1 Appendix Sec-

tion S1.2.6 precisely quantifies the ongoing right-skewed broadening of BMI distributions

using expressions for the SD and skewness of our theoretical BMI distribution of Eq (12) (see

Table B in S1 Appendix), and the observed evolution of the mean, the SD, and the ratio of the

rate parameters kI/kb, see Fig 1 and Fig C in S1 Appendix. Essentially, the observed growth in

average BMI over time (Fig 1) implies more fluctuations since fluctuations are proportional to

BMI (Fig 2, red triangles), and more fluctuations mean a broadening of the distribution. We

emphasize, however, that whereas these changes in BMI distribution over time are reflected in

our model through changes in the fitted values of the model parameters, our model is about

aggregate effects on the whole population, with parameters fitted to BMI data, and our model

between the log-normal distribution as null-model and the other distributions. The second and third panels

show that the pð0Þeq ðxÞ (red solid) and peq(x) (red dashed) distributions are more successful in fitting the

empirical data than the commonly used log-normal distribution, both near the center of the distribution and in

the high-BMI tail. This is confirmed in the bottom panel that shows the root mean-square error (RMSE)

resulting from fitting NU data to BMI distributions in the range 1997–2014.

https://doi.org/10.1371/journal.pone.0189795.g003

Table 1. Akaike Information Criterion test for model distributions fitted to 2011 empirical BMI distribution data in Fig 3 and Fig B of S1 Appendix.

Relative likelihood ratio exp[(AICmin−AIC)/2] of non-social pð0Þeq ðxÞ, social peq(x), and log-normal flog(x) models for 2011 NU, NHANES and BRFSS empirical

BMI distributions.

Data Relative Likelihood Ratio

p0
eqðxÞ peq(x) flog(x)

NU < 10−300 1 < 10−300

NHANES 4.3 × 10−5 1 6.0 × 10−34

BRFSS < 10−300 1 < 10−300

https://doi.org/10.1371/journal.pone.0189795.t001
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does not identify or specify individual root causes of the recent increases observed in popula-

tion-average BMI.

Overall, the fluctuations in BMI represent the aggregate effect of natural variations in diet

and physical activity, and perturbations that result from factors ranging from biology to psy-

chology to social phenomena [8, 10, 12, 40], which may indeed include genetic effects [10, 14]

and self-reinforcing weight gain such as in the “runaway train” [11]. The essential reason for

the right-skewness (and its increase over time) can be traced back to the proportionality of

BMI fluctuations to BMI, in the balance between drift and diffusion: individuals are subject to

multifactorial perturbations and, for biological reasons, high-BMI individuals tend to lose or

gain more weight due to these perturbations [8, 12, 28]. The fluctuations, thus, broaden the

distribution more on the high-BMI side.

Implications for public health interventions

Our results offer new insight into a mechanism that causes ongoing right-skewed broadening

over time of BMI distributions in high-income societies. The mechanism we identified does

not discriminate by socioeconomic and demographic factors, which is consistent with recent

findings [10]. It will be important to reconcile the new understanding offered by this mecha-

nism with the qualitative theories that are currently being debated to explain the right-skewed

broadening over time [10–12, 14]. Specifically, our results indicate that, as the population BMI

average increases over time [41, 42], the whole population is sensitive to increasing BMI fluctu-

ations (Fig 2, red triangles). These fluctuations ultimately broaden the distribution (especially

on the high-BMI side) and increase the high-BMI segment of the population. This adds justifi-

cation to interventions that target the whole population [6, 7]. On the other hand, we demon-

strate and quantify that high-BMI individuals are particularly at risk for large fluctuations that

may result from multifactorial perturbations (Fig 2, red triangles), and our results confirm that

reducing these fluctuations by discouraging perturbations such as yo-yo dieting [43] should be

another focus of intervention.

More broadly, our results establish a form of statistical mechanics for human weight

change. Analogous to drift-diffusion processes in physics and finance [31, 44], our empirical

findings and mathematical model provide a new understanding of the role of drift and diffu-

sion mechanisms in the dynamics of BMI distributions in human populations.

Supporting information

S1 Video. Animation of empirical BMI distributions drawn from BRFSS data (1987–

2013). (Red dots) Empirical probability density function computed from BRFSS data year-by-

year. (Solid red line) Result of fitting empirical data to non-social model, i.e. Eq (12), year-by-

year. (Dashed blue line) Result of fitting empirical data to solution of full Fokker-Planck equa-

tion (see Section S1.2.3 of S1 Appendix for details).

(AVI)

S1 Appendix. This Supporting information file contains further information on data,

methods, and the data and code files (see [20] and S1 Matlab Code, respectively) that we

make available with this manuscript, followed by Figs A–D, and Tables A and B. Numbers

for equations, figures and tables that are not prefixed by S refer to the main text of the paper.

(PDF)

S1 Matlab Code. The results presented in this paper were generated using these Matab m-

files.

(ZIP)
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