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Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
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Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular
traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively
explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as
vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally
unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until
now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for
the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that
optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to
this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions
vary and automotive density increases.
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I. INTRODUCTION

The physics of traffic flow has been studied for more
than half a century [1–7]. On freeways, traffic has been
successfully modeled as a nonlinear fluid, making analytical
solution possible [2]. On urban grids, however, the nonlinear
effects of timed traffic signals make most models analytically
intractable [8–12].

The inefficient timing of traffic signals is responsible for up
to 10% of traffic delays [13]. These delays cause commuters to
waste dozens of hours in traffic each year, leading to billions
of dollars in wasted fuel and a large environmental cost [14].
Coordination between traffic signals has proven to be a cost-
effective way to reduce these delays dramatically [13].

Signal timing schemes fall into two categories: real time
and pretimed [3,15]. Real-time schemes make adaptive use of
information about traffic density and localized conditions to
trigger light cycle changes [16]. Unfortunately, this informa-
tion is not readily available at most intersections, and installing
the necessary detectors can be prohibitively expensive [17].

Pretimed schemes employ detailed computer simulation
and heuristic optimization tools such as genetic algorithms
[18–20] to search for optimal timings [17,21]. Once a scheme
is generated, it can be relatively inexpensive to implement, but
generating such a scheme requires computational resources
that are often beyond the capacity of local government. Where
traffic demands fluctuate, these schemes can quickly become
outdated, so there is no guarantee that they will be optimal by
the time they are implemented [16].

II. MOTIVATION

Many theoretical questions about optimal traffic signal
timing remain unanswered. For a single one-way street, the
best solution is a so-called green wave [4,22], in which
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vehicles leaving a light at the instant it turns green arrive at all
subsequent lights at the instant they turn green [8]. In theory,
this means that vehicles traveling at the speed limit will never
stop at a red light, although in practice this fails when traffic
density exceeds a “jamming threshold” [12].

It is impossible to achieve a bidirectional green wave on
an arbitrary two-way street due to the inherent frustration
of competing demands in each direction [23]. Past theo-
retical work has focused on maximizing the “bandwidth”
[4,5,16,21,24]—the interval of time in which vehicles can
progress through all traffic signals without stopping—of a
finite segment of road. There are several drawbacks to this
approach. First of all, bandwidth is not a direct measure of
efficiency, so the solution that maximizes bandwidth may
not minimize total trip time, stops, or delay [8]. Second, for
long roads, nonzero bandwidth is often unachievable in one
direction, making this approach incapable of improving upon
one-way schemes without arbitrarily dividing the road into
subsections.

III. OUR MODEL

We consider a highly simplified model of an infinite two-
way street with traffic lights along the entire length [25]. We fix
the spacing between consecutive lights �x and set xn = n�x,
where xn denotes the position of light n.

We let φn(t) denote the phase of light n at time t , taking
light n to be green when

2Nπ � φn(t) < (2N + 1)π

and red when

(2N + 1)π � φn(t) < (2N + 2)π,

where N is any integer. Note that we ignore the yellow portion
of the cycle and assume that the green time is half of the light
cycle.

Since the geometry of the system is invariant under transla-
tions of integer multiples of the block length (x �→ x + N�x),
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FIG. 1. (Color online) Space-time diagram for traffic flow. The
red (dark gray) bars indicate locations and times for red lights
and the green (light gray) bars indicate green lights. (a) illustrates
the definitions of various variables and parameters in our model.
(b) displays various vehicle trajectories. The dashed line (blue)
indicates a car traveling slower than the green-wave speed vg , the
dash-dotted line (magenta) indicates a car traveling faster than vg , and
solid lines (black) indicate cars traveling exactly at vg both eastbound
(starting on the left) and westbound (starting on the right). (c) displays
vehicle trajectories near the green- and red-wave speeds. The solid
line (black) indicates a car traveling at the green-wave speed. The
dashed line (red) indicates a vehicle traveling slightly faster than
the red-wave speed. The dash-dotted line (red) indicates a vehicle
traveling slightly more slowly than the red-wave speed.

we will look for optimal timing schemes that are also invariant
under such translations. We therefore set

φn(t) = 2π

TL

(t − n�t) , (1)

where TL is the period of the light cycle and �t is the time offset
between consecutive lights (see Fig. 1) with 0 � �t < TL. We
set φ0(0) = 0 without loss of generality.

Consider a single vehicle starting at x = 0 and traveling
eastbound on this street with constant velocity v = �x/TC ,
where TC is the time for a car to travel one block. When
the vehicle arrives at a red light, it stops until the light turns
green, and then repeats the process (for simplicity we ignore
acceleration and assume drivers react instantaneously). From

the perspective of the vehicle, at the moment this light turns
green, the relative light phases are identical to the initial state.
Thus, the speed will be periodic.

The car’s effective speed veff—its average speed as t →
∞—is determined by the fraction of time spent waiting at red
lights, suggesting that an appropriate metric for efficiency is
E = veff/v.

We refer to a single cycle in which a vehicle passes through
NL lights before stopping and waiting for a time W as a “trip.”
During a single trip, a vehicle travels a distance of �xNL

in a total time TCNL + W . The vehicle arrives at light n at
time nTC , and thus NL will be the smallest positive integer
satisfying

(N − 1/2)TL + NL�t � NLTC < NTL + NL�t (2)

for some integer N .
Without loss of generality, we can eliminate one of the three

free parameters (TL, TC , and �t) above by defining the ratios
rC = TC

TL
and r� = �t

TL
, so Eq. (2) becomes

(N − 1/2) � NL (rC − r�) < N. (3)

It is straightforward to show that NL = ⌈
1

2{rC−r�}
⌉

and N =
�NL(rC − r�)� satisfy Eq. (3) [26], where �x� and �x� denote
the standard ceiling and floor functions and {x} = x − �x�
denotes the fractional part of x modulo 1.

The waiting time W may also be computed: the car stops at
time NLTC and begins to move again at time NTL + NL�t =
�NL(rC − r�)�TL + NL�t , so

W = �NL(rC − r�)�TL + NL�t − NLTC. (4)

Thus the efficiency for eastbound traffic can be expressed as

Eeast(r�,rC) = rCNL

�NL (rC − r�)� + r�NL

=
rC

⌈
1

2{rC−r�}
⌉

⌈⌈
1

2{rC−r�}
⌉

(rC − r�)
⌉ + r�

⌈
1

2{rC−r�}
⌉ . (5)

The efficiency depends on only two parameters, rC > 0 and
0 � r� < 1. It is bounded between 0 and 1, and decreases
monotonically with r� except at discontinuities. It reaches
a global maximum of 1 at r� = rC , which represents a green
wave, and immediately after a discontinuity at r� = rC + 1/2,
which we refer to as a red wave. A red wave occurs when
vehicles arrive at the instant each light turns red. In this worst-
case scenario (r� = rC + 1/2), vehicles travel for TC seconds
and then wait at a red light for the full red time TL/2. This
represents the global minimum. A vehicle traveling slightly
faster than the red wave (rC < r� − 1/2), on the other hand,
will arrive at the instant before each light changes. As a result,
all wait times are infinitesimal, and the efficiency is close to 1.
Sample trajectories for vehicles near the green- and red-wave
speeds are displayed in Fig. 1. Cross sections of Eeast for fixed
rC are shown in green in Fig. 2 [26].

For westbound traffic, the time delay between consecutive
signals is not �t but rather TL − �t , and thus the efficiency for
westbound traffic is simply Ewest(r�,rC) = Eeast(1 − r�,rC),
the reflection of the function about r� = 0.5.
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FIG. 2. (Color online) Theoretical efficiency versus r� for (a)
rC = 0.34, (b) rC = 0.26, (c) rC = 0.25, and (d) rC = 0.13. Green
(light gray) indicates Eeast; red (dark gray) indicates Ewest; and black
indicates Etot assuming equal demand in both directions.

On a two-way street, we wish to maximize the weighted
average efficiency

Etot = weEeast + wwEwest, (6)

with weights we and ww dependent on the traffic volumes in
each direction. For simplicity we will consider the case of
symmetric demand, we = ww = 1/2.

Given TC as dictated by safety considerations and holding
TL constant, rC is fixed, and we attempt to choose r�

(equivalent to choosing the offset �t) to maximize efficiency.
This simultaneously maximizes the effective velocity veff and
minimizes the total wait time.

With equal demand in both directions, it might seem
that the symmetry of the problem suggests a symmetrical
optimum, i.e., r� = 0 or r� = 1/2 [22,23]. These are indeed
local extrema, but usually not maxima. Another reasonable
hypothesis is that the bidirectional optimum will coincide with
the optimum in one direction, a green wave [9,22,23]. This is
a local maximum but not necessarily the global maximum.
Surprisingly, the global optimum instead often occurs when
both directions are suboptimal but one direction is favored
over the other. This is possible because small perturbations
in r� can cause dramatic shifts from local efficiency minima
to local maxima near discontinuities in Eeast or Ewest (note
that the green-wave peak is not discontinuous). When, e.g., a
discontinuous peak in Ewest occurs near the green-wave peak
for Eeast, the loss of efficiency by perturbation off the eastbound
green wave is offset by gains in the westbound efficiency. As a

0 0.5 1 1.5 2
rC

FIG. 3. (Color online) Optimality of the green wave. Intervals of
rC for which the green wave optimizes the bidirectional efficiency are
indicated by green (light gray) rectangles. Intervals of rC for which
other timings are optimal are indicated by red (dark gray) rectangles.

result, green-wave timings fail to be optimal for various ranges
of rC (see Fig. 3).

IV. SOME LIMITATIONS

While the efficiency metric in Eq. (6) provides some insight
into the ideal signal timing for a two-way street, it has a number
of limitations. First of all, it applies only to a single vehicle.
In practice, vehicles often travel in groups known as platoons
[24,27]. The jagged efficiency peaks described by Eq. (5) and
displayed in Fig. 2 may not be achievable by an entire platoon
of vehicles. The theory also assumes identical non-interacting
cars with constant speeds and perfectly uniform light spacing.
In practice, city blocks vary in length even in well-planned
urban grids and driver behavior varies. Additionally, the
interactions between vehicles can play a significant role in
exacerbating congestion [28].

To test the predictions of our model and verify that they are
relevant when these assumptions are relaxed, we simulated
the flow of vehicles on a street with 50 periodically placed
traffic lights. We imposed periodic boundary conditions to
avoid arbitrarily specifying entrance and exit rates. Instead,
cars were randomly placed along the street according to a
specified density ρ representing the fraction of the system
occupied by vehicles of a finite length (1/25 of the block
length for the results displayed in Figs. 4 and 5), and the total
number of vehicles in the system was conserved. The trips of
these vehicles were simulated during 30 light cycles. In the
simulation, vehicles were prevented from passing each other.
This caused queues to form at red lights as one might expect.
Simulations were repeated with unevenly spaced lights and
variable vehicle speed; results can be found in Fig. 4.

V. SIMULATION RESULTS

When the density is less than one vehicle per block,
the simulations are indistinguishable from theory. At low to
moderate vehicle densities, the computed efficiency remains
well approximated by the theory and non-green-wave optima
persist [see Fig. 4(a)]. At moderate densities, the efficiency
near discontinuous peaks degrades noticeably while the green
wave remains highly efficient. Thus a perfect green wave in
either direction is optimal for moderate densities. At very high
densities, gridlock, the scenario where vehicles at green lights
are unable to advance due to the queue ahead of them, becomes
a significant issue and the efficiency of all timings degrades.
In our model, the only way to avoid gridlock is to set r� = 0
and have all lights change in unison.

The middle and bottom panels of Fig. 4 show the efficiency
when vehicle speed varies [Fig. 4(b)] and when the light
spacing varies [Fig. 4(c)]. Variation in the light spacing with
proportionate variation in the offsets can actually improve
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FIG. 4. (Color online) Efficiency from simulation versus r� for
rC = 0.34. (a) shows the efficiency for increasing vehicle density:
the solid curve (black) indicates the theoretical efficiency (Etot); the
dotted (green), dash-dotted (blue), and dashed (red) curves represent
simulation results for vehicle densities of 10%, 50%, and 90% density,
respectively. The bottom panels display the effects of variation in
the traffic signal spacing (b) and vehicle speed (c) on the efficiency
with 10% traffic density. Solid (black) indicates the theoretical
efficiency; the dotted (green), dash-dotted (blue), and dashed (red)
curves represent simulation results for 0%, 1%, and 5% standard
deviation, respectively.

efficiency for some ranges of r�. This is reasonable given
that lights that are close together behave like a single light and
lights that are far apart have smaller wait times relative to the
travel times. Variation in the vehicle speed has a smoothing
effect on the discontinuities in the efficiency curve. Both of
these factors degrade the efficiency in a smooth way, allowing
the discontinuous optima to persist when the variation is small.
Thus the theoretical predictions are “structurally stable.” This
feature of the model suggests that the predictions may indeed
have value even in real-world systems with nonideal behavior.

VI. DENSITY EFFECTS

To explore the effects of vehicle density in greater detail,
we computed the efficiency for fixed (r�,rC) and increasing
ρ. Below a critical density, which we refer to as the “jamming
threshold” [29], the predictions of Eq. (6) give a good
approximation for the efficiency. Above this threshold, the
efficiency degrades, and the theory no longer approximates
the observed behavior. For a range of physically relevant
parameters the critical density is above 50% of the capacity of
the road. Near some discontinuous peaks, however, the critical
density is small and few vehicles are able to perform at the level
indicated by the theory. This is due to the narrow bandwidth
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FIG. 5. (Color online) Predictions and simulations of various
jamming transitions. (a) displays the eastbound efficiency for various
values of r� with rC = 0.34. Of particular interest are the green curve
(dashed), which represents an eastbound green wave, and the red
curve (solid), which is near an eastbound red wave. The markers
correspond to the critical densities for platoon segmentation (circle)
and platoon coalescence (square). (b) and (c) show the bidirectional
(weighted average of east- and westbound) efficiency for rC = 0.34
and rC = 0.26, respectively, with curves representing green-wave
peaks (green dashed curve), discontinuous peaks (red solid curve),
and suboptimal timings (blue dash-dotted curve).

corresponding to these timings [26]. Nonetheless, timings near
discontinuous peaks in the bidirectional efficiency can remain
optimal for a range of densities beyond the threshold.

The degradation of the quality of the theoretical predictions
is due to the assumption that vehicles are noninteracting.
Above the jamming threshold, the interactions between ve-
hicles cause delays that the theory ignores. In simulations,
vehicles initially clump together forming platoons. These
platoons can interact either by coalescing to form even larger
platoons or by being segmented at red lights. We can estimate
the critical density corresponding to the jamming threshold
analytically by deriving the conditions under which this
coalescence and segmentation occur at steady state [26]. These
predictions are displayed along with the numerical results
in Fig. 5.

VII. CONCLUSIONS

In the mid-20th century physicists and engineers began tak-
ing an analytical approach to traffic management. Theoretical
work has since proceeded along several lines, but we believe
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that there is still insight to be gained from simple solvable
models.

Here we have presented an analysis of traffic flow on an
urban arterial road with periodic traffic signals. Our approach
allows analytical prediction of optimal signal timing that
agrees well with numerical simulations and approximates the
behavior of the system even when idealizing assumptions are
relaxed. It yields an efficiency metric that can be expressed
and computed analytically, yet it reproduces features observed
in more complex models—features such as platoon formation
[25], discontinuous efficiency curves [23,28], irregular flow
patterns [9], and phase transitions due to jamming [1,28,29].

This work provides a theoretical framework for understand-
ing the effects of signal timing on the efficiency of traffic
flow. The insight gained from our simple model could help
motivate the design of more efficient coordinated traffic signal
timing programs on long arterials, particularly during periods

of low to moderate traffic demand. Our analysis suggests
that timing schemes other than the traditional green-wave
approach may be optimal under certain circumstances, and
merit further exploration with realistic simulations of complex
driver behavior. Our methods could also be used to generate
“smart” initial guesses for numerical optimization schemes
with more complex efficiency metrics, or, alternatively, our
efficiency metric (6) could be modified to apply to arbitrary
networks of one- and two-way streets, perhaps allowing
exact rather than approximate optimization and yielding more
intuitive understanding of results.
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