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S1. COMPARISON TO PREVIOUS MODELS

Our model is not the first to account for population-level handedness in human populations. Several previous models
explain this outcome as an evolutionarily stable strategy due to frequency dependent fitness functions (e.g., [10],[14],
[17], [18]). For example, in [17], Billiard et al. combine a constant fitness cost for left-handers with a frequency
dependent fitness advantage for individuals in the minority. Similarly, in the model of Ghirlanda et al., members
of the minority experience an advantage in antagonistic interactions and a disadvantage in synergistic interactions.
Their fitness is defined in terms of a balance between these two components. In both models, equilibrium is obtained
when the fitness of left- and right-handed individuals are equal [10].
In this paper, however, we employ a different approach. We argue that segments of a population will switch

handedness over long time scales according at a rate determined by a probabilistic function. Thus equilibrium
is obtained when the overall transition rates between left- and right-handed groups balance. These probabilistic
transition rates should be related to the comparative fitness of the members of the groups.
We now determine the relationship between fitness functions fL(l), fR(l) and probabilistic transition rates PRL(l),

PLR(l). Recall that PRL(l) represents the probabilistic transition rate from right to left. Clearly, PRL(l) must be
non-negative. Also, it should reach a maximum (minimum) when the difference in fitness between left- and right-
handers is at a maximum (minimum). The simplest example of such a function is PRL(l) = A(fL(l) − fR(l)) + B,
where A,B > 0 are constants guaranteeing that PRL(l) remains positive. By symmetry, fL(l) = fR(1 − l) and
PRL(l) = PLR(1− l). Thus PLR(l) = A(fR(l)− fL(l)) +B. Transition rates defined in this way satisfy the symmetry
relation PRL(l) + PRL(1− l) = 2PRL(1/2) and, as such, are sigmoidal for many different types of fitness functions.
We should note that in this model, the probability PRL(l)∆t that a given individual switches from right to left

within time ∆t is non-zero even when fR(l) > fL(l). In such a situation, the probability that a given left-hander
switches is PLR(l)∆t > PRL(l)∆t. However, if right-handers are much more prevalent than left-handers, the total
number of switches from right to left may still outweigh the number from left to right. In other words, it is possible
that lPLR(l)∆t < rPRL(l)∆t. This would cause the fraction left-handed to increase despite right-handers having a
higher fitness.
Also, if for some l0, fR(l0) = fL(l0), then PRL(l0) = PLR(l0) = B and dl

dt

∣

∣

l0
= (1 − l0)B − l0(B) = (1 − 2l0)B. So

if l0 < 1/2, the fraction left-handed will increase even when the fitness is equal for left- and right-handers. In our
model, having equal fitnesses does not necessarily lead to equilibrium.
Despite the differences between our formulation and a fitness-based formulation, the predictions are similar. If we

use the fitness functions fL(l) = (1 − c)e−kal + c(1 − e−ksl) similar to those proposed by Ghirlanda et al. we can

generate PRL(l) and PLR(l) (which are sigmoid as expected). In figure S1 we plot the resulting function dl(t)
dt

for
appropriate parameter values (such as A = 0.0144, B = 0.0047, c = 0.6964, ka = 3.7745, ks = 1.9974) and observe a
graph very similar to figure S2.
Despite the similarities between the predictions of equation (2.2) and those of previous models, there are various

advantages to the novel approach introduced in this paper. The most significant feature of equation (2.2) is its
generality. For particular choices of the transition rates, it can reproduce the results of more specialized models.
However, it can also describe much richer dynamics. Thus it could easily be applied to selection for other traits that
involve frequency dependent competition within and between two subpopulations.
Despite its flexibility, this model is also very robust. Given weak restrictions on the slope and curvature of the

transition rates, the qualitative dynamics are insensitive to the particular functional form selected. For example, the
equilibrium curves displayed in figure 1 of the main text are qualitatively similar to those observed for a variety of
different transition rates including sigmoid functions, exponentials and power laws.
Equation (2.2) is also continuous and dynamic. It can be used to predict not only equilibrium solutions, but also the

transient population dynamics. It uses intuitive quantities that, at least in theory, could be determined empirically.
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Figure S1. Comparison of probabilistic and fitness-function models. Solid blue line: the function dl/dt [%/yr]
generated using generic sigmoid PRL in the probabilistic model from equation (2.2) of the main text. Dashed red
line: the function dl/dt [%/yr] generated using PRL implied by fitness functions proposed by Ghirlanda et al. [10].

Given sufficient data on the inheritance of handedness over generations, the probabilistic transition rate could be
calculated for particular values of l. Fitness functions, on the other hand, are abstract quantities that, though useful
from a theoretical perspective, are not directly measurable in the real world. In light of these advantages, our model
could be considered a generalization of and improvement upon previous fitness-based models for population-level
handedness.

S2. PHENOTYPIC MODEL FOR POPULATION DYNAMICS

The probabilistic model described in the main text provides a description of the population dynamics from a top-
down perspective. However, it may be more intuitive to consider the dynamics from a bottom-up perspective. Here
we develop a model using reproductive fitness arguments on the level of individuals and show that this produces
essentially the same result.

Iterative Model

Let us define N to be the total population size, and L and R to be the number of left- and right-handers, respectively.
We make the simplifying assumption that L + R = N , i.e., there are no ambidextrous individuals. Also, define
handedness fractions r = R/N and l = L/N so that r + l = 1.

Suppose that in this population, individuals repeatedly pair off and reproduce, adding new individuals to the
population in each generation. From an evolutionary perspective, the expected number of offspring that individuals
produce should be dependent on their fitness. With all other factors being equal, an individual’s fitness should be
determined by his or her handedness and the distribution of handedness in the population. Thus we define bR(l) and
bL(l) to be the expected number of offspring born to right- and left-handers.

It is well-established that there is a genetic component to handedness [7]. Thus the handedness of offspring will be
related to the handedness of the parents. We define σXY as the probability that a pairing XY produces left-handed
offspring, where X and Y represent the dominant hands of the parents (1 − σXY corresponds to the probability of
right-handed offspring). We expect σXY = σXY (l) to be a frequency dependent function. This assumption can be
motivated by a simple example.

Suppose that left-handedness is a recessive trait. Under this assumption, the probability that a right-hander
carries a recessive “lefty” allele will be dependent on the fraction left-handed within the population, and as such, the
probability that a right-hander bears left-handed off-spring will be frequency dependent. In all likelihood, the genetic
mechanism for handedness is more complex, but the same principle will hold. That is, the distribution of handedness
in the population will reflect the distribution of handedness in the gene pool, and consequently the probability of
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inheriting a given phenotype will be dependent on genotypes of the parents and indirectly on the fraction left-handed
within the population as a whole.
There are 6 possible reproductive interactions (we ignore gender effects here for simplicity—including them should

not qualitatively change the results):

R+R
σRR−−−→ L R+ L

σRL−−−→ L L+ L
σLL−−→ L

R+R
1−σRR−−−−→ R R+ L

1−σRL−−−−→ R L+ L
1−σLL−−−−→ R .

At each iteration, we suppose that a fractionD of current members dies off. Then the number of left- and right-handers
in the new generation is:

Ln+1 =

[

bRσRRR
2
n + (bR + bL)σRLRnLn + bLσLLL

2
n

Nn

]

+ [1−D]Ln

Rn+1 =

[

bR(1− σRR)R
2
n + (bR + bL)(1− σRL)RnLn + bL(1− σLL)L

2
n

Nn

]

+ [1−D]Rn .

Note: The parameters bR, bL, σRR, σRL, and σLL are frequency dependent, but this dependence is suppressed in the
above equation for the sake of clarity.

Continuous Model

The iterative perspective is intuitive but has limited predictive capacity. One limitation is that the number of left-
and right-handers are only defined at fixed intervals. To remove this obstacle, we transform the discrete model into

a continuous model. We set βX(l) = bX(l)
∆t

to be the instantaneous birth rate for individuals with handedness X and

δ = D

∆t
to be the instantaneous death rate. We set X(t) = Xn and X(t + ∆t) = Xn+1, and let ∆t → 0 to obtain

ordinary differential equations for the evolution of R(t), L(t) and N(t). However, these equations are not independent.
In fact, we are interested only in the the evolution of l(t), which is governed by

dl(t)

dt
=

[

βRσRRr(t)
2 + (βR + βL)σRLr(t)l(t) + βLσLLl(t)

2
]

− βeffl(t) , (S1)

where βeff represents a weighted average βeff = r(t)βR + l(t)βL.
In order to analyse this ODE, assumptions about the functions βX(l) are needed: a first order assumption is that

these should be linear functions of the frequency l, and by symmetry, we expect that βL(l(t)) = βR(1− l(t)). In other
words, the birth rates must satisfy

βL(l) = β0 + β1(l − 1/2)

βR(l) = β0 − β1(l − 1/2) .

where β0 and β1 are unknown parameters. To obtain rough estimates for the values of these parameters we note
that according to Aggleton et al. [21], the average lifespan of right-handers is 3.31% longer than their left-handed
counterparts, with much of the difference attributable to higher rates of premature death in war and accidents. This
indicates that in a society consisting of approximately 90% right-handers, left-handers appear to have a lower fitness.
This fitness differential should be reflected in the model’s reproductive rates. This suggests that at equilibrium
(l = l∗), βR (l∗) = 1.0331 · βL (l∗). We also note that census data suggests that βeff(l

∗) = 0.01383 [25]. This allows us
to solve for β0 and β1 in terms of l∗.
From [7], the observed fractions of left-handed offspring σXY are

σRR(l
∗) = 0.095 ,

σRL(l
∗) = 0.195 ,

σLL(l
∗) = 0.261 .

We expect these parameters to be functions of l, but all data is drawn from modern societies where the fraction
left-handed is l = l∗. Fortunately, using symmetry arguments, we can obtain additional points:

σRR(1 − l∗) = 1− 0.261 ,

σRL(1 − l∗) = 1− 0.195 ,

σLL(1 − l∗) = 1− 0.095 .
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In a population of uniform handedness, one might expect all offspring to inherit the same handedness as their
parents. However, in practice the situation is more complex. Monozygotic (identical) twins often possess discordant
handedness [7]. Thus, handedness cannot be fully determined by genotype. To account for this, most genetic models
introduce a random component that partially determines handedness. With that motivation, we define εXY to be the
probability due to chance that parents with handedness XY produce left-handed offspring in a population consisting
entirely of right-handers. We then obtain:

σRR(0) = εRR σRR(1) = 1− εLL

σRL(0) = εRL σRL(1) = 1− εRL

σLL(0) = εLL σLL(1) = 1− εRR .

It is unclear exactly what values are appropriate for εXY since no isolated human population consisting entirely of
left- or right-handers exists. If εXY = 0, then equilibria at l = 0, l∗, 1/2, 1 − l∗, 1 appear and those at l = l∗ and
l = 1 − l∗ are unstable. This is inconsistent with the observed stable fixed point. We therefore assume εXY must
satisfy 0 < εXY < σXY (l

∗).

For given εXY values, we can fit a cubic polynomial to the 4 known points σXY (l) (known at l = 0, l∗, 1− l∗, 1) to
obtain smooth approximate functions σXY (l). The resulting dynamical system governed by equation (S1) has either
3 or 5 fixed points: (l∗, 12 , 1 − l∗) or (l∗, l2,

1
2 , 1 − l2, 1 − l∗) where l∗ and 1 − l∗ are stable. For example, if we set

εRR = εRL = εLL = 0.02, we see an unstable fixed point at l = 1/2 in addition to the expected stable fixed points at
l = l∗ and l = 1− l∗.

Up to this point, we have treated l∗ as an unknown parameter. In practice, however, the fraction of the population
that is left-handed can be measured. Estimates for the value of this parameter depend on the precise method
of measurement and definition of left-handedness, but it is generally agreed that this fraction is close to 10% [2].
Equation (S1) allows us to compute an independent prediction for l∗ using only the birth rates and the phenotype
ratios of offspring given above (note: the predicted l∗ does not depend on the choice of ε although the stability of the
fixed point does). This results in a predicted percent left-handed of 11.78%, consistent with the measured value.

By presenting this model of phenotype evolution, we wish to emphasize the generality of the probabilistic model
presented in the main text. For appropriate choices of functions PRL, equation (2.2) in the main text can be made to
agree nearly identically with model S1 above, as demonstrated in figure S2.
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Figure S2. Comparison of probabilistic and phenotypic models. Solid blue line: the function dl/dt [%/yr]
generated using generic sigmoid PRL in the probabilistic model from equation (2.2) of the main text. Dashed red

line: the function dl/dt [% / yr] implied by the phenotypic model from equation (S1).
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S3. THE SYMMETRY OF HANDEDNESS

There have been various attempts to account for species-level hand preferences. Billiard et al. [17] point out
that left-handedness is “associated with several fitness costs.” Thus the population-level bias can be maintained
through a balance between a frequency-dependent fitness function and a constant fitness cost. An alternate model
by Ghirlanda et al. [10] suggests that the combination of “antagonistic” and “synergistic” interactions and their
associated frequency-dependent fitness functions can create an evolutionarily stable equilibrium with an asymmetric
(and non-trivial) distribution of handedness.
While both models have merit, they disagree on a fundamental question: Are left- and right-handedness interchange-

able? In other words, is a mirror image world of 90% left-handers and 10% right-handers equally plausible? Billiard et
al. suggest that the fitness costs “such as lower height and reduced longevity...are not likely to be frequency-dependent.”
Thus these fitness costs break the symmetry and guarantee that only the observed handedness distribution is possible.
However, the aforementioned fitness costs have only been observed in a biased population consisting of lateralized

individuals. For example, Aggleton et al. [21] show that left-handers are more likely to die prematurely, and that
this effect is at least partially due to “increased vulnerability to both accidental death and death during warfare.”
They go on to argue that “the most likely explanation for the increase in accidental death among the left-handed
men concerns their need to cope in a world full of right-handed tools, machines, and instruments.” Clearly if left-
handedness were more prevalent than right-handedness, then left-handed tools would also be more common, and, as
a result, right-handers instead would experience increased risk of accidental death. Thus, it is likely that these fitness
costs are frequency-dependent and symmetric.
In contrast to Billiard et al., Ghirlanda’s model assumes that left- and right-handedness are indeed interchangeable.

Given an initial distribution of 50% left-handers and 50% right-handers, this model predicts that both the observed
distribution and its mirror image are equally likely equilibrium outcomes. On this point, our probabilistic model
agrees with Ghirlanda et al. Given the fact that there is no reason to expect that right-handedness is inherently
superior to left-handedness from a fitness perspective, we assume that the probabilistic transition rates satisfy the
symmetry condition PRL(l) = PLR(1− l).

S4. DERIVATION OF ATHLETIC SELECTION MODEL

Professional sports are artificial systems that involve varying degrees of competitive and cooperative activities.
Their participants undergo a selection process through tryouts that is in some ways analogous to natural selection.
Additionally, handedness data for professional athletes is widely available. Thus, athletics provide an ideal opportunity
to test whether our model’s predictions are consistent with data from selective systems.
There is a fundamental difference between selection in professional sports and natural selection. In natural selection,

the distribution of a trait within a population changes in response to selection pressure, modifying the gene pool.
Professional athletes, however, represent only a small segment of the much larger human population. Changes in the
distribution of a trait among professional athletes are unlikely to influence the gene pool in the human population;
furthermore, most professional sports have not existed for the time scales required to significantly modify the gene
pool. As a result, the population of professional athletes must draw new members from a pool that consists of about
90% right-handers. Thus, direct comparison of our model to sports data is not possible: instead, we must account for
this more complex selection process in order to make predictions that are applicable to real-world sports.
To begin, we define l∗ to be the fixed point predicted by the probabilistic model (2.2) described in the main text. This

represents the ideal equilibrium distribution of left-handedness in a hypothetical world where all interaction occurs
through the sport under consideration. We assume that skill is normally distributed throughout the population
with mean µ = 0 and standard deviation σ. Because left-handedness is relatively rare, this trait should provide a
competitive advantage in sports involving direct physical confrontation. Let l represent the fraction left-handed within
a sport. When l deviates from l∗, the sport is not at its ideal equilibrium state, and left-handers must experience
a shift in skill ∆s. We assume that professional sports operate efficiently, that is, they select players exclusively
according to skill level. Then the distributions of skill among left- and right-handers satisfy

pR (s) =
1

√
2πσ2

e−
s
2

2σ2

pL (s) =
1

√
2πσ2

e−
(s−∆s)2

2σ2
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where

∆s = k (l∗ − l) .

In this formulation, when the ideal equilibrium fraction of left-handedness is achieved, their is no advantage to
possessing either handedness and the individuals are selected according their intrinsic skill.
In most sports, individuals must undergo a tryout in order to demonstrate sufficient skill for participation. As a

result only a fraction of the total population is allowed to participate in the sport at a given level of competition.
We define the fraction selected ψ = n/N , where n is the number of individuals selected and N is the size of the total
population. ψ will determine a minimum skill cutoff sc for participation according to the relation

ψ = lbg

∫ ∞

sc

pL (s) ds+ (1− lbg)

∫ ∞

sc

pR (s) ds ,

where lbg represents the background rate of left-handedness (≈ 1/10). We can simplify this expression by normalizing

the various parameters by the standard deviation: we set ŝc ≡ sc/
√
2σ2, ∆ŝ ≡ ∆s/

√
2σ2, and k̂ ≡ k/

√
2σ2 to get

ψ =
1

2
lbgerfc (ŝc −∆ŝ) +

1

2
(1− lbg)erfc (ŝc) . (S2)

In this formulation, the fraction left-handed among the individuals selected will be represented by the first term on
the right-hand side of equation (S2) divided by the entire expression,

lsel =
lbg
2ψ

erfc (ŝc −∆ŝ) .

After many tryouts, the fraction left-handed within a sport will stabilize with the lsel = l. This equilibrium fraction
represents the observed fraction left-handed among professional athletes, thus we call it lpro. So, the equilibrium state
is implicitly determined by

lpro =
lbg
2ψ

erfc
[

ŝc − k̂ (l∗ − lpro)
]

. (S3)

This model has the following properties:

• If l∗ = lbg, then lpro = lbg.

• If the sport is not selective at all, in the limit ŝc → −∞ (ψ → 1), lpro → lbg as this means that selection is
independent of skill.

• As the sport becomes infinitely selective, ŝc → ∞ (ψ → 0), lpro → l∗. In other words, the ideal equilibrium
fraction is achieved when the sport is infinitely selective. (To see this, assume that lsel = l∗ + δ and l = l∗ − δ.
Expand in a Taylor series about δ = 0 and take the limit ŝc → ∞ to find that δ → 0. Thus lsel → l∗ and l → l∗,
so lpro = l∗.)

Using this model, we employed numerical techniques to compute the solutions lpro for a variety of sports, and then
compared these results to the observed fractions left-handed as seen in figure 2.
This model can also be extended to examine how the distribution of handedness varies within a single sport. If

left-handedness is a desirable trait (that is, it provides a skill advantage at equilibrium), then we expect that it should
be very prevalent among the most skilled individuals due to the selection mechanism. To see this, we consider the
case of baseball. It is clear that in baseball, l∗ = 1

2 since the sport involves primarily competitive interactions (the
observed lpro ≈ 0.3). Thus, left-handedness is a desirable trait for potential professionals as it will provide a particular
skill advantage in batting. At the professional level, most hitters face the same set of pitchers and compete indirectly
with one-another for roster spots. They should therefore be expected to experience the same skill advantage due
to handedness. In other words, ∆ŝ = k̂(l∗ − lpro) is a constant (in sports like boxing, however, where individuals
compete more frequently with others near their own rank, the skill advantage would be a rank-dependent function r,
∆ŝr = k̂(l∗ − lr)). Ranking the hitters by skill, we observe that the fraction left-handed above rank r should satisfy

lr =
lbgN

2r
erfc (ŝr −∆ŝ) ,
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where ŝr satisfies

r =
1

2
lbgNerfc (ŝr −∆ŝ) +

1

2
(1− lbg)Nerfc (ŝr) .

Using this result, we plotted the predicted fraction left-handed as a function of rank as seen in figure 3. This model
predicts a non-trivial shape for the distribution of handedness within baseball that is consistent with the observed
distribution. This is a strong indication that this athletic selection model provides a good mathematical approximation
for the tryout-based selective mechanism within professional sports.

S5. DATA SUMMARY

Data used in generation figure 2 came from a variety of sources. The total number of participants came from
surveys conducted by the Sporting Goods Manufacturers Association in 2009 [26], except for men’s and women’s
fencing, where participant numbers were extrapolated from data published by the National Federation of State High
School Associations [27]. The number of professional players came from listings of top-rated players (the only ones for
which handedness was readily available) at the internet URLs indicated in Table S1, with the exception of baseball,
football, and hockey, where numbers are absolute totals.
When handedness was not available in tabulated form, it was evaluated based on public photos of players in action.
In Table S1, the predictions for the fraction left-handed were generated using an estimate of the ideal equilibrium

l∗ for each sport. The appropriate value for l∗ depends primarily on the degree of cooperation c for the sport. This
parameter is difficult to estimate in sports that possess clear cooperative and competitive elements. However, in order
to observe fixed points other than l∗ = 1/2, c must exceed a threshold that appears to be relatively high for the
types of transition rates considered in this paper (See figure 1). So, we assumed that l∗ = 1/2 for sports primarily
involving direct confrontations: baseball (batters vs. pitchers), boxing, fencing, table tennis, hockey (defensemen and
forwards).
Some sports (or particular positions within sports), however, possess highly lateralized equipment, positioning or

strategy. For these sports, it is ideal for all individuals to possess the same handedness; so, the minority handedness
will be selected against. For example, in football, blocking schemes are often designed to protect a quarterback’s
blind side. As a result, it is beneficial for all quarterbacks on the roster to possess the same handedness in order to
minimize variations of the offensive sets. Consequently, we assume that for quarterbacks in football, golfers, and left
and right wings in hockey the value of c ≈ 1, i.e., l∗ = 0 or 1.

S6. PARAMETER SENSITIVITY ANALYSIS FOR PROBABILISTIC MODEL

In the probabilistic model, there are two unknown functions P coop
RL

(l) and P comp
RL

(l). While general properties of
these functions such as monotonicity are known, the appropriate form for these functions is unknown and is difficult
to determine from data. The generic sigmoid functions

P comp
RL

(l) =
[

1 + ek1
1−2l
l(1−l)

]−1

(S4a)

P coop
RL

(l) =
[

1 + e−k2
1−2l
l(1−l)

]−1

, (S4b)

satisfy restrictions on PRL for k1, k2 >
√
3/2 and capture the essential fixed point behaviour (k1, k2 set the steepness

of the curves). Unfortunately, these equations introduce two new parameters that may alter the dynamics. To
examine the sensitivity of the model to these parameters, we assumed l∗ was the fixed point of the system. We then
computed the partial derivatives of l∗ with respect to each parameter. In the vicinity of l∗ = 1/10, the observed ratio

of left-handers in human populations, and in the range of k1 ∈
[√

3
2 ,∞

)

, k2 ∈
[√

3
2 ,∞

)

and c ∈ (0, 1), we found that

∣

∣

∣

∂l
∗

∂c

∣

∣

∣

∣

∣

∣

∂l∗

∂k1

∣

∣

∣

≥ O(102) and

∣

∣

∣

∂l
∗

∂c

∣

∣

∣

∣

∣

∣

∂l∗

∂k2

∣

∣

∣

≥ O(102) .

Thus for a wide range of parameter values,
∣

∣

∣

∂l
∗

∂c

∣

∣

∣
�

∣

∣

∣

∂l
∗

∂k2

∣

∣

∣
and

∣

∣

∣

∂l
∗

∂c

∣

∣

∣
�

∣

∣

∣

∂l
∗

∂k1

∣

∣

∣
near the fixed point l∗ = 1

10 . In

other words, the location of the fixed point is more sensitive to c than k1 and k2 by several orders of magnitude
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Sport Data source Total
partici-
pants

Total
pros

Observed
fraction
left-

handed

Predicted
fraction
left-

handed

Method URL(s)

Baseball Major League Baseball players 1871 to 2009, Lahman Base-
ball Database

2629000 1200 0.329 0.318 Handedness
listed

baseball1.com

Boxing BoxRec, top 200 ranked boxers by class: Heavy-
weight, Cruiserweight, Middleweight, Welterweight, Feath-
erweight, Bantamweight, and Flyweight, September 2010

587000 1056 0.201 0.304 Handedness
listed

boxrec.com

Fencing, Men Federation Internationale D’Escrime, top 25 ranked for
each weapon: Epee, Saber and Foil, 2010

1462 75 0.200 0.247 Handedness
listed

fie.ch

Fencing,
Women

Federation Internationale D’Escrime, top 25 ranked for
each weapon: Epee, Saber and Foil, 2011

1123 75 0.253 0.240 Handedness
listed

fie.ch

Football,
Quarterbacks

National Football League, active players, preseason 2010 75071 120 0.067 0.064 Google
image
search

nfl.com

Golf, Men PGA TOUR, top earners 2009 4600000 120 0.042 0.059 PGA Tour
profile
images

pgatour.com

Golf, Women Ladies Professional Golf Association, top earners 2010 1000000 100 0.000 0.060 LPGA Tour
profile
images

lpga.com

Hockey, De-
fensemen and
Forwards

National Hockey League, active players, preseason 2010 309971 601 0.323 0.303 Shot side
listed

espn.go.com/nhl

Hockey, Left
Wings

National Hockey League, active players, preseason 2010 80458 156 0.090 0.065 Shot side
listed

espn.go.com/nhl

Hockey, Right
Wings

National Hockey League, active players, preseason 2010 91805 178 0.742 0.613 Shot side
listed

espn.go.com/nhl

Table Tennis,
Men

International Table Tennis Federation, top ranked players,
November 2010

1586628 100 0.280 0.333 Ranking
photo

ittf.com

Table Tennis,
Women

International Table Tennis Federation, top ranked players,
November 2010

654372 100 0.200 0.327 Ranking
photo

ittf.com

Table S1. Summary of data sources used in preparing figure 2.
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for physically allowable k-values. Therefore we are justified in ignoring the effects of individual choices of k1 and k2
in order to focus on the effects of the choice of c. We believe these results are robust for various different sigmoid
functions P comp

RL
, P coop

RL
.

25. Central Intelligence Agency, 2011 The world factbook. https://www.cia.gov/library/publications/the-world-
factbook/index.html.

26. Sporting Goods Manufacturers Association, 2009 Single sport reports. http://www.sgma.com.
27. The National Federation of State High School Associations, 2009-2010 High school athletics participation survey.

http://www.nfhs.org.

Note: See manuscript for references 1-24.


