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S1. GENERALITY OF MODEL

The model presented in this paper is applied to the
widespread phenomenon of religious shift, but may be
more generally applicable to a variety of competitive so-
cial systems. The model allows for either competitive ex-
clusion (a ≥ 1) or stable coexistence (a < 1) in systems
composed of two social groups, and makes sense in the
context of social networks. A similar model (reference
1) was applied to the phenomenon of language death.
Some other competitive social systems in which identical
or very similar models may apply include, for example,
smoker vs. non-smoker, vegetarian vs. meat-eater, obese
vs. non-obese, and Mac user vs. PC user.

S2. WHY THREE FIXED POINTS

In the main text of our paper, we state that there
can be at most three fixed points for “generic” func-
tions Pyx(x;u) that satisfy our assumptions of symmetry,
monotonicity, C∞ continuity, and limiting properties. In
this section we will clarify the meaning of “generic”.
Pyx is a non-negative function of x parametrized by u

(which will henceforth be abbreviated as simply u). The
fixed points x∗ can be written as solutions to the equation
0 = (1−x)Pyx(x;u)−xPyx(1−x; 1−u) for a given value
of u. When u = 0 the limiting properties Pyx(0;u) = 0
and Pyx(x; 0) = 0, along with monotonicity, imply that
only x∗ = 0 and x∗ = 1 can be fixed points, with x∗ = 0
the only stable fixed point. When u = 1, similarly, only
x∗ = 0 and x∗ = 1 can be fixed points, with only x∗ = 1
stable.
If there is a single intermediate fixed point x∗ 6= 0, x∗ 6=

1 for all values of u ∈ (0, 1), then it must limit to x∗ → 0
when u → 0 and x∗ → 1 when u → 1 (assuming it’s
stable—the opposite will be true if it is unstable). In or-
der for other fixed points to appear, the continuous curve
connecting (x;u) = (0; 0) to (x;u) = (1; 1) would have to
have zero slope at some value of u (see Supporting Figure
S1). Thus the condition for a single intermediate fixed
point is that dx/du > 0 for all u (stable), or dx/du < 0
for all u (unstable).

SUPPORTING FIG. S1. Typical fixed points for Eq. (1).
Here Pyx(x;u) = cxau, with (a) a = 3 and (b) a = 1

2
. Red

open lines indicate unstable branches, black solid lines indi-
cate stable branches of fixed points. Panel (a) demonstrates
that the intermediate unstable branch of fixed points x∗

u(u)
serves as a separatrix, with all other initial conditions leading
to x = 0 or x = 1. Panel (b) demonstrates how the stable
fixed point x∗

s(u) typically varies with u. If the intermediate
fixed point is unstable, it must limit to x∗

u → 1 when u → 0
and x∗

u → 0 when u → 1.

For a separable function Pyx(x;u) = X(x)U(u),
X(x) > 0, U(u) > 0, the implications of this
condition are as follows. The fixed point equation
(1 − x)Pyx(x;u) = xPyx(1 − x; 1 − u) becomes (1 −

x)X(x)U(u) = xX(1− x)U(1− u), and, assuming x 6= 0
and x 6= 1,

U(u)

U(1− u)
=

x

1− x

X(1− x)

X(x)
. (S1)

Thus

[

U(u)

U(1− u)

]

′

du

dx
=

[

x

1− x

X(1− x)

X(x)

]

′

. (S2)

Since
[

U(u)
U(1−u)

]

′

= [U ′(u)U(1−u)+U(u)U ′(1−u)]/U2(1−

u) > 0 ∀u due to assumptions (monotonicity implies that
U and U ′ must both be positive for all nonzero argu-
ments), the condition dx/du < 0 becomes

[

x

1− x

X(1− x)

X(x)

]

′

< 0 . (S3)
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This can be simplified to

X ′(x)

X(x)
+

X ′(1− x)

X(1− x)
>

1

x
+

1

1− x
. (S4)

The direction of the inequality would be reversed for a
stable intermediate fixed point. Note that a sufficient

condition would be X ′/X > 1/x. This, or the same
condition with the inequality reversed, is clearly satis-
fied for any power law form Pyx(x;u) ∼ xa, a 6= 1.
It is also satisfied for any function with a monotonic
first derivative X ′(x) (Sketch of proof: Let X ′(x) =
X ′

0 + f(x), where f(x) ≡
∫ x

0
X ′′(ξ)dξ is a monotoni-

cally increasing function. Then xX ′(x) = xX ′

0 + xf(x)
and X(x) =

∫ x

0
X ′(ξ)dξ = xX ′

0 +
∫ x

0
f(ξ)dξ. Thus

xX ′(x) − X(x) = xf(x) −
∫ x

0 f(ξ)dξ. That last quan-
tity is necessarily greater than zero for any monotoni-
cally increasing f(x), and therefore xX ′(x) > X(x), or
X ′/X > 1/x.)
An analogous result holds for inseparable functions

Pyx(x;u). Using the same approach, the condition is:

1

x
P ′

yx(x;u) +
1

1− x
P ′

yx(1 − x; 1− u) > (S5)

1

x2
Pyx(x;u) +

1

(1− x)2
Pyx(1− x; 1 − u) ,

where prime notation represents a derivative with respect
to the argument, not the parameter. Thus a sufficient
condition is P ′

yx(x;u)/Pyx(x;u) > 1/x for all u. The full
condition is satisfied by any function for which curvature
doesn’t change sign.

S3. STABILITY OF FIXED POINTS

Examine the stability of the fixed point at x = 0 (and
note that the same argument will work for the stability of
the fixed point at x = 1). Set x = η, a small perturbation
from x = 0. Then

η̇ = (1− η)Pyx(η;u)− ηPyx(1− η; 1− u)

≈ Pyx(0;u) + η
[

P ′

yx(0;u)− Pyx(0;u)− Pyx(1; 1− u)
]

= −η
[

Pyx(1; 1− u)− P ′

yx(0;u)
]

(S6)

to O(η2). So the fixed point x∗ = 0 is stable to small
perturbations if Pyx(1; 1 − u) > P ′

yx(0;u). For a power
law Pyx ∼ xa, this will be true only when a > 1. The
fixed point x∗ = 0 will be unstable for a < 0, and its
stability will depend on the sign of u− 1

2 when a = 1.
The stability of the intermediate fixed point is fully de-

termined once the stabilities of the two endpoints x∗ = 0
and x∗ = 1 are known. Because it is a one-dimensional
flow, the intermediate fixed point must be stable when
the endpoints are unstable, and vice-versa when the end-
points are stable (see Figure S2).

SUPPORTING FIG. S2. The flow in x for various values
of the constant a. Filled circles indicate stable fixed points,
while open circles indicate unstable fixed points. The leftmost
fixed points correspond to x = 0, while the rightmost fixed
points correspond to x = 1.

S4. DATA SETS AND MODEL FITS

Data used in validating this model originated in census
surveys from a range of countries worldwide. A total of 85
data sets had 5 or more independent data points. These
came from various regions of 9 different countries: Aus-
tralia, Austria, Canada, the Czech Republic, Finland,
Ireland, the Netherlands, New Zealand, and Switzerland.
Table I tabulates the names of the relevant publications
and internet URLs (active as of May 2011) from which
data sets and census information were obtained.
Because questions on census surveys generally ask in-

dividuals to choose a particular “religious affiliation,”
we can only use our model to attempt to explain their
choices: while it is not possible to know from census data
what portion of religiously affiliated individuals truly be-
lieve in God (or agree with any particular aspect of re-
ligious theology), it is possible to know an individual’s
declared affiliation. Thus if an individual declares he is
religious, even for purely utilitarian non-theological rea-
sons, we consider him to be part of the religiously affili-
ated group. Our hope is that the model will capture the
dynamics of this declared affiliation.
The census reports that we used each had distinct

methods for categorizing religious affiliation as “none.”
Usually this included “atheist,” “agnostic,” “secular
deist,” “humanist,” “spiritual but not religious,” and
other similar answers.
Fitting was done by minimizing root-mean-square er-

rors. Using a functional form Pyx = cxau, the parameters
c and a were taken to be universal while the parameter u
was allowed to vary with each data set. This was accom-
plished by simultaneously optimizing c, a, and u1...uN

such that the RMS error summed over all N data sets
was minimized.
Supporting Figure S3 shows how that summed error

varied with the parameter a. We chose a ≈ 1 for the fits
discussed in this paper both for simplicity and because of
the broad minimum visible around a ≈ 1. The parameter
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SUPPORTING FIG. S3. Summed root-mean-square error
over all data sets versus parameter a in Pyx = cxau. The er-
ror was calculated by finding the combination of parameters
c, x0i and ui (where i varies over all data sets) that minimized
the root mean square error between the model predictions and
the data. Blue curve indicates exact error calculations, red
indicates smoothed error after convolution with a Gaussian
(inset). Note that there appears to be a broad minimum near
a = 1.

c, which simply sets a time scale, was approximately 0.2.

S5. PERTURBATION OF NETWORK

STRUCTURE

In this section we examine in greater depth the im-
plications of Eq. (3), a continuous deterministic system
with arbitrary coupling.

All-to-all coupling

If G(ξ, ξ′) = 1/2 then there is uniform all-to-all coupling,

and we see that x(ξ, t) = 1
2

∫ 1

−1 R(ξ′, t)dξ′ = R̄(t), inde-

pendent of space, where R̄ is the spatially averaged value
of R.
Then (3) becomes

∂R

∂t
= (1−R)Pyx(R̄;u)−RPyx(1− R̄; 1− u) (S7)

If at some time t∗ R(ξ, t∗) = R0(t
∗) is independent of

space, then R̄(t∗) = R0(t
∗) and Eq. (S7) becomes

∂R0

∂t
= (1−R0)Pyx(R0;u)−R0Pyx(1−R0; 1−u) , (S8)

which follows dynamics identical to the original two-
group discrete system.

Country Source(s)

Australia 2008 Year Book Australia, Table 14.38
www.abs.gov.au

Austria “Die Habsburgermonarchie 1848-1918 Band
IV: Die Konfessionen,” Statistik Austria
(1995) and private communication with Statis-
tik Austria.
www.statistik.at

Canada Canada Statistical Yearbook (years 1891-1901,
1911, 1921, 1931, 1941, 1951, 1971, 1991) and
Statistics Canada online database.
www.statcan.gc.ca,

www.statcan.gc.ca/pub/11-516-x/sectiona/

4147436-eng.htm

The Czech
Republic

Czech Demographic Handbook 2007, Table 1-
19
www.czso.cz,
www.czso.cz/csu/2008edicniplan.nsf/engp/4032-
08,

www.czso.cz/csu/2008edicniplan.nsf/engt/

24003E05ED/$File/4032080119.pdf

Finland The Finland Year Book (years 1943, 1945,
1962, 1963, 1964, 1965, 1968, 1969, 1970, 1971,
1972, 1976, 1981, 1986) and private communi-
cation with Statistics Finland
www.stat.fi,

www.stat.fi/tup/suoluk/suoluk vaesto en.html

Ireland Central Statistics Office Ireland online
database
www.cso.ie,

www.cso.ie/px/pxeirestat/Dialog/varval.asp

?ma=CNA28&ti=Population+(Number)+by

+County,+Year+and+Religious+Denomination

The Nether-
lands

Centraal Bureau voor de Statistiek (Statistics
Netherlands) online database
www.cbs.nl,

statline.cbs.nl/StatWeb/publication/?VW=T&

DM=SLNL&PA=37944&D1=0&D2=a&HD=

091126-1210&HDR=T&STB=G1 (in Dutch)

New Zealand Hoverd, W. J. “No Longer a Christian Coun-
try? - Religious Demographic Change in New
Zealand 1966-2006,” New Zealand Sociology
23(1) 2008, and private communication with
Statistics New Zealand
www.stats.govt.nz,

www.stats.govt.nz/Census/2006CensusHomePage/

classification-counts-tables/about-people/

religious-affiliation.aspx

Switzerland Private communication with Swiss Federal
Statistical Office (Bundesamt für Statistik
BFS)
www.statistik.admin.ch

TABLE I. Sources of census data.

Perturbation off of uniform R with all-to-all coupling

We impose a destabilizing perturbation such that the
portion of the population with ξ < 0 has lower R and
the portion with ξ > 0 has higher R, i.e.,

R(ξ, t0) = R0 + ε sgn ξ , (S9)
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where ε is a small parameter. Then x(ξ) =
1
2

∫ 1

−1 R(ξ′)dξ′ = R0, and from (3) we get

∂R

∂t
=(1 −R0 − ε sgn ξ)Pyx(R0;u)

− (R0 + ε sgn ξ)Pyx(1−R0; 1− u) (S10)

We can also look at the dynamics of the mean religious
affiliation R̄,

∂R̄

∂t
=

∂

∂t

(

1

2

∫ 1

−1

R(ξ′, t)dξ′
)

=
1

2

∫ 1

−1

∂R(ξ′, t)

∂t
dξ′ .

(S11)
Plugging Eq. (S10) into Eq. (S11) and simplifying gives

∂R̄

∂t
=

∂R0

∂t
= (1−R0)Pyx(R0;u)−R0Pyx(1−R0; 1−u) ,

(S12)
so the mean religious affiliation R̄(t) continues to follow
the dynamics of the original system despite the pertur-
bation.
Rearranging Eq. (S10), we see

∂R

∂t
=

∂R0

∂t
− ε sgn ξ(Pyx(R̄;u) + Pyx(1− R̄; 1− u)) ,

(S13)
and direct differentiation of Eq. (S9) yields

∂R

∂t
=

∂R0

∂t
+

∂ε

∂t
sgn ξ . (S14)

Equating these expressions yields a differential equation
for ε(t):

∂ε

∂t
= −ε(Pyx(R̄;u) + Pyx(1− R̄; 1− u)) . (S15)

Note that ε remains independent of the spatial coordi-
nate, and that ε → 0 as t → ∞, for any initial condi-
tion (the time constant may vary with the parameter u
and the state R̄). So the initial perturbation must damp
out, and the system must evolve to a single affiliation as
t → ∞, just as the original system (1) did.

Non-uniform coupling

We consider the case of non-uniform spatial coupling as
the continuum limit of a discrete network where the links
are nearly but not quite all-to-all. In that case, a very
destabilizing perturbation would be one in which the
network is segregated into two clusters, each one more
strongly coupled internally than externally. As described
in the main text, one kernel representing such coupling
is

G(ξ, ξ′) =
1

2
+

1

2
δ(2H(ξ)− 1)(2H(ξ′)− 1) , (S16)

where δ is a small parameter (δ � 1) that determines
the amplitude of the perturbation and H(ξ) represents
the Heaviside step function.
If the initial state of the population is uniform such

that R(ξ, t0) = R0 then x(ξ, t0) =
∫ 1

−1
G(ξ, ξ′)R0dξ

′ =
R0 and R will satisfy Eq. (3), giving

∂R0

∂t
= (1−R0)Pyx(R0;u)−R0Pyx(1−R0; 1−u) . (S17)

Thus R will remain uniform in space and will follow the
same dynamics as the original system, despite a non-
uniform coupling kernel of arbitrary amplitude.

Perturbation off of uniform R with non-uniform

coupling

As before, we impose a destabilizing perturbation such
that the portion of the population with ξ < 0 has lower R
and the portion with ξ > 0 has higher R, i.e., R(ξ, t0) =
R0 + ε sgn ξ, where ε is again a small parameter. This
should conspire with the perturbed coupling kernel to
maximally destabilize the uniform state.
The definition of x gives

x(ξ, t) =(R0 − ε)

∫ 0

−1

G(ξ, ξ′)dξ′+

(R0 + ε)

∫ 1

0

G(ξ, ξ′)dξ′

=R0 + εδ sgn ξ , (S18)

and from (3) we get

∂R

∂t
= (1−R0 − ε sgn ξ)Pyx(R0 + εδ sgn ξ;u)

− (R0 + ε sgn ξ)Pyx(1−R0 − εδ sgn ξ; 1− u) .
(S19)

Directly differentiating R(ξ, t0) = R0 + ε sgn ξ, then re-
arranging terms on the right-hand-side of Eq. (S19) gives

∂R0

∂t
+ sgn ξ

∂ε

∂t
= (1−R0)Pyx(R0 + εδ sgn ξ;u)

−R0Pyx(1 −R0 − εδ sgn ξ; 1− u)− ε sgn ξ [Pyx(R0

+ εδ sgn ξ;u) + Pyx(1 −R0 − εδ sgn ξ; 1− u)] . (S20)

Now calculate ∂R0

∂t
directly. Note that R0 = R̄ =

1
2

∫ 1

−1 R(ξ′, t)dξ′, so
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∂R0

∂t
=

∂

∂t

(

1

2

∫ 1

−1

R(ξ′, t)dξ′
)

=
1

2

∫ 1

−1

∂R(ξ′, t)

∂t
dξ′

=
1

2

∫ 1

−1

[

(1−R0 − ε sgn ξ′)Pyx(R0 + εδ sgn ξ′;u)− (R0 + ε sgn ξ′)Pyx(1−R0 − εδ sgn ξ′; 1− u)
]

dξ′

=
1

2
(1−R0)

[

Pyx(R0 − εδ;u) + Pyx(R0 + εδ;u)
]

−
1

2
R0

[

Pyx(1 −R0 + εδ; 1− u) + Pyx(1−R0 − εδ; 1− u)
]

+
1

2
ε
[

Pyx(R0 − εδ;u)− Pyx(R0 + εδ;u)
]

+
1

2
ε
[

Pyx(1−R0 + εδ; 1− u)− Pyx(1−R0 − εδ; 1− u)
]

. (S21)

Taylor expanding in both ε and δ eliminates all first order
terms in ε, leaving

∂R0

∂t
= (1−R0)Pyx(R0;u)−R0Pyx(1−R0; 1−u)+O(ε2δ) ,

(S22)
so the assumption that the mean religious affiliation fol-
lows the dynamics of the original unperturbed system is
well justified.
Similarly Taylor expanding Eq. (S20) to first order in

ε and δ allows canceling of the ∂R0/∂t terms on either
side (using Eq. (S22)), leaving an equation in ε:

∂ε

∂t
=− ε

{

Pyx(R0;u) + Pyx(1−R0; 1− u)

− δ
[

(1−R0)P
′

yx(R0;u)

+ R0P
′

yx(1−R0; 1− u)
]

}

. (S23)

The sign of the quantity in braces in Eq. (S23) deter-
mines the stability of the uniform spatial state. It’s clear
that for sufficiently small δ, the uniform state will always
be stable. However, in systems with an unstable inter-
mediate fixed point (or no intermediate fixed point), the
uniform state will remain stable even when the quantity
in braces is initially positive! This is because Eq. (S22)
will still hold for small ε, making R0 approach a steady
state value R∗

0 = 0 or R∗

0 = 1 from the original system.
Since ε < min(R0, 1 − R0) is required to maintain vari-
ables in the allowed domain, ε may initially grow, but it
will have to eventually shrink as R0 → R∗

0.
The above further shows that ε does not develop any

additional spatial structure, so an initial state with R =
R0 + ε sgn ξ will maintain such a spatial structure as R0

and ε evolve in time.
This calculation demonstrates that an understanding

of the simple all-to-all discrete system gives insight into
the more complex problem of religious shift on a social
network. In numerical experiment, the results of the per-
turbation calculation described here remain valid even for
very sparse networks quite different from all-to-all.

S6. NUMERICS

In the main text, we describe a numerical experiment
that we performed on systems (2) and (3). Figure 3 of
the main text shows the results of that experiment with
a simulated size N = 500, and in Figure S4, we show
that the all-to-all system (1) becomes a good match to
the discrete stochastic system (2) as the number of nodes
increases (thus explaining why Figure 3 is well predicted
by understanding the all-to-all system).
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o
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g
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u
p

X

 

 

Model prediction

Simulation, N = 50

Simulation, N = 100

Simulation, N = 500

SUPPORTING FIG. S4. Comparison of simulation of discrete
stochastic system (2) to model predictions for various system
sizes (all-to-all coupling). Here x0 = 0.1 and the total size of
the network is 50 (red), 100 (blue), or 500 (green). The solid
black line represents the solution to Eq. (1), the large N limit
of this model.

We also performed a our numerical experiment on (3),
the continuous deterministic generalization of (1). Re-
sults are presented in Figure S5, where the steady states
are indistinguishable from the all-to-all model.
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SUPPORTING FIG. S5. Results of simulation of the contin-
uous deterministic system (3) on a network with two initial
clusters weakly coupled to one another. The ratio p of out-
group coupling strength to in-group coupling strength is (a)
p = 0.01; (b) p = 0.40; (c) p = 0.80 (N = 500). When
u = 1/2, all points are fixed points, so the initial condition
determines the final state. Steady states are indistinguishable
from those of the all-to-all model (1) despite the non-uniform
coupling and inhomogeneous initial conditions.

S7. TIME DELAY

We define the effective time delay d to be the delay
between the perturbed solution (not all-to-all) and the
all-to-all solution (the logistic function, when Pyx = cxau
with a ≈ 1), as measured when R̄ has risen halfway to its
asymptotic value of 1 (we assume a rising function with
no loss of generality: the symmetric case of a decaying
function can be examined under the change of variables
u 7→ 1− u, x0 7→ 1− x0). Thus d is the difference in the
time tc when a solution R̄(tc) =

1
2 (1 + R0) and tall-to-allc

when R̄all-to-all(t
all-to-all
c ) = 1

2 (1 + R0). We observe this
quantity to increase monotonically with the perturbation
off of all-to-all δ—see Figure S6 for typical behavior at
various values of δ. In the limit that p � 1 (δ near 1,
nearly two separate clusters) we find that the curve is
well approximated by d ∝ − ln(p)/(2u− 1).
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p = 1.00

p = 0.80

p = 0.40

p = 0.01

SUPPORTING FIG. S6. Variation in the behaviour of sys-
tems (2) and (3) with increasing perturbation off of all-to-all.
This illustrates delay time as inter-cluster connection proba-
bility p varies. Equivalent values of the perturbation param-
eter δ in order of decreasing p are δ = 0, δ = 0.11, δ = 0.43,
and δ = 0.98. Left panel: Discrete stochastic system (2) (en-
semble averages of 10 realizations). Right panel: Continu-
ous deterministic system (3). For all simulations x(0) = 0.1,
u = 0.6 and N = 500.

We find this form by assuming R̄(t) ≈ R̄0 + ηy(t) +
O(η2) for η � 1, then eliminating terms of order higher
than linear in the equation governing R̄ ((3) after simpli-
fying for two cliques). We then expand this approximate
equation for small p, retaining only lowest order terms.
The resulting system is linear and can be solved exactly
for the critical time tc at which R̄ rises to (1 + x0)/2.
The delay is simply the difference between that time and
tall-to-allc = − ln(x0/(1 + x0))/(2u − 1), the critical time
for the all-to-all p = 1 system.
Based on numerical work, the general behaviour of

this approximation—d ∝ − ln p—seems to remain valid
even for large p, although the additive constant seems
to change (see Figure S7). That is to be expected, since
d → 0 is required for p → 1.
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d ∝ -log p
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d

 

 

Simulation data

d ∝ -log p

SUPPORTING FIG. S7. Variation of time delay d with in-
creasing inter-cluster connection probability p. Points and
error bars indicate mean and standard deviation with 10 real-
izations. Lines show estimated logarithmic dependence. Left
Panel: Discrete stochastic system (2). Right panel: Contin-
uous deterministic system (3). For all simulations N = 500,
x(0) = 0.1 and u = 0.6.

S8. LIMITATIONS OF MODEL

The models we have proposed have been greatly ideal-
ized, with the hope of capturing key aspects of the rapid
growth of religious non-affiliation. We recognize that the
simplification of this real-world social phenomenon limits
our models applicability in several ways:

• We do not model birth, death, or migration ef-
fects. Differential rates for affiliated vs. unaffiliated
groups could change the stability of fixed points,
although we do not believe that these would affect
the qualitative aspects of results.

• We assume constant u. Realistically, we believe
that many factors affect this parameter, and that
many of those factors change as societies evolve.
Our hope is that the time scale for the rapid growth
of non-affiliation differs from the time scale for drift
in u, but we have no evidence that that is the case.

We speculate that for most of human history, the
perceived utility of religion was high and of non-
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affiliation low. Religiously non-affiliated people
persisted but in small numbers. With the birth of
modern secular societies, it appears that the per-
ceived utility of adherence to religion versus non-
affiliation has changed significantly in numerous
countries, such as those with census data shown in
Fig. 1, and the United States, where non-affiliation
is growing rapidly. We would be interested in any
direct or indirect evidence of changes in u, and be-
lieve this may be a fruitful topic of research for
social scientists.

• We assume that individuals are free to choose their
degree of religious affiliation. This may not be true
in some societies, although it may still be possible
to interpret such a restriction as a limiting case of
our model where either u → 0 or u → 1. There
may also be difficulties obtaining valid data in such
societies.

• Each version of our model is analyzed in the limit of
all-to-all social interaction, or nearly all-to-all. This
limit is vindicated by the numerical work showing
that similar dynamics occur even in very sparse net-
works.

• All religions are treated as a single social group.
This simplification allowed us to obtain analytical
results, and analogous multi-group models may be
examined in future work. We suspect that a sys-
tem composed of many individual groups with dis-
tinct utilities could be aggregated into a two-group
model where “effective utilities” are determined by
weighted averaging of component group utilities.

• Our models do not allow for the emergence of a
new social group if the population has reached con-
sensus (i.e., everyone belongs to one group). Thus
our models cannot describe the birth of a new re-
ligion to which no one previously belonged. As
discussed in Supplementary Section S9, this phe-
nomenon might be captured by relaxing our as-
sumption that Pyx(0;u) = 0, an assumption that
limits the applicability of the models at times when
either group consists of an extremely small fraction
of the population or vanishes altogether.

S9. BIRTH OF NEW SOCIAL GROUPS

The assumption that Pyx(0;u) = 0 indicates that no
individual will ever switch to a social group with no mem-
bers. That assumption prohibits the formation of a new
social group. Here we discuss the impact of relaxing that
assumption.

When Pyx(0;u) 6= 0, the argument in Supplementary
Section 2 remains valid in a certain sense. The introduc-
tion of new fixed points along the intermediate branch
in Supporting Figure S1 remains impossible for generic
functions of the sort discussed there. However, the former
linear branches of fixed points at x∗ = 0 and x∗ = 1 will
no longer be lines, but rather curves, though each will
still intersect the intermediate branch in a saddle-node
bifurcation. The former positions of the saddle-node
bifuractions—e.g., (u∗, x∗) = (0, 1) and (u∗, x∗) = (1, 0)
when a > 1—will change, such that they will be shifted
away from the corners of the graph. Figure S8 shows a
typical example of how the position of the fixed points
will change when Pyx(0;u) 6= 0.

SUPPORTING FIG. S8. Typical example of fixed point
positions for system where Pyx(0;u) = 0 (left panel) and
Pyx(0;u) 6= 0 (right panel). Solid blue lines indicate stable
fixed points, dashed red lines indicate unstable fixed points.
Here we take Pyx(x;u) = c(x+ b)au with a = 3, b = 0 in the
left panel and a = 3, b = 0.1 in the right panel.

The upshot of this change is that stable coexistence
of two social groups is possible when Pyx(0;u) 6= 0 is
allowed, but the qualitative change in the dynamics of the
system is negligible for small Pyx(0;u). Since we do not
model lower-order effects such as birth, death, migration,
or deliberate nonconformity, we feel that our model will
not be accurate when either social group consists of a very
small fraction of the population. Thus we believe that the
gain in simplicity by setting Pyx(0;u) = 0 identically is
justified.
Supporting Figure S9 shows the least-squares error in

a fit to data with the form Pyx(x;u) = (x + b)au. It’s
clear that b = 0 does a good job of minimizing the error,
further vindicating our simplifying assumption.
We also note that relaxing the assumption Pyx(x; 0) =

0 has a similarly small effect on the dynamics for small
nonzero values of Pyx(x; 0). Setting this to zero (besides
seeming logically justified) not only simplifies the model
by reducing free parameters, but also provides the best
fit to data.
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SUPPORTING FIG. S9. Summed root-mean-square error
over all data sets versus parameter a in Pyx(x;u) = c(x+b)au.
The error was calculated by finding the combination of pa-
rameters b, c, x0i and ui (where i varies over all data sets)
that minimized the root mean square error between the model
predictions and the data. Note that the best-fit value of b ap-
pears to be near b = 0 and a = 1, corresponding to the case
shown in Supporting Figure S3.


