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Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and
desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood
theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of
chimera states by analyzing a minimal model consisting of two interacting populations of oscillators.
Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and
saddle-node, Hopf, and homoclinic bifurcations of chimeras.
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Many creatures sleep with only half their brain at a time
[1]. Such unihemispheric sleep was first reported in dol-
phins and other sea mammals, and has now been seen in
birds and inferred in lizards [2]. When brain waves are
recorded, the awake side of the brain shows desynchron-
ized electrical activity, corresponding to millions of neu-
rons oscillating out of phase, whereas the sleeping side is
highly synchronized.

From a physicist’s perspective, unihemispheric sleep
suggests the following (admittedly, extremely idealized)
problem: What’s the simplest system of two oscillator
populations, loosely analogous to the two hemispheres,
such that one synchronizes while the other does not?

Our work in this direction was motivated by a series of
recent findings in nonlinear dynamics [3–8]. In 2002,
Kuramoto and Battogtokh reported that arrays of nonlo-
cally coupled oscillators could spontaneously split into
synchronized and desynchronized subpopulations [3].
The existence of such ‘‘chimera states’’ came as a surprise,
given that the oscillators were identical and symmetrically
coupled. On a one-dimensional ring [3,4] the chimera took
the form of a synchronized domain next to a desynchron-
ized one. In two dimensions, it appeared as a strange new
kind of spiral wave [5], with phase-locked oscillators in its
arms coexisting with phase-randomized oscillators in its
core—a circumstance made possible only by the nonlo-
cality of the coupling. These phenomena were unprece-
dented in studies of pattern formation [9] and synchro-
nization [10] in physics, chemistry, and biology, and
remain poorly understood.

Previous mathematical studies of chimera states have
assumed that they are statistically stationary [3–7]. What
has been lacking is an analysis of their dynamics, stability,
and bifurcations.

In this Letter we obtain the first such results by consid-
ering the simplest model that supports chimera states: a
pair of oscillator populations in which each oscillator is

coupled equally to all the others in its group, and less
strongly to those in the other group. For this model we
solve for the stationary chimeras and delineate where they
exist in parameter space. An unexpected finding is that
chimeras need not be stationary. They can breathe. Then
the phase coherence in the desynchronized population
waxes and wanes, while the phase difference between the
two populations begins to wobble.

The governing equations for the model are
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where � � 1, 2 and N� is the number of oscillators in
population �. The oscillators are assumed identical, so the
frequency ! and phase lag � are the same for all of them.
The strength of the coupling from oscillators in �0 onto
those in � is given by K��0 . To facilitate comparison with
earlier work, we suppose that K11 � K22 � �> 0, and
K12 � K21 � � > 0, with �> �. Thus, the coupling
within a group is stronger than the coupling between
groups. This corresponds to the assumption [3–5] of a
nonlocal coupling that decreases with distance. By rescal-
ing time, we may set �� � � 1. It also proves useful to
define the parameters A � �� � and � � �=2� �, be-
cause, as we will show, chimeras exist only if these quan-
tities are small enough.

Simulations of Eq. (1) display two types of behavior. For
many initial conditions, the system approaches the syn-
chronized state where all �’s are equal. Otherwise it
evolves to a chimera state (Fig. 1). The oscillators in group
1 are in sync; those in group 2 are not.

Figure 2 illustrates the dynamics of chimera states. We
plot the phase coherence of the desynchronized population,
as quantified by the order parameter r�t� � jhei�j�t�i2j,
where the angle brackets denote an average over all oscil-
lators in population � � 2. In Fig. 2(a) the order parameter
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remains constant, except for slight fluctuations due to
finite-size effects. Thus, this chimera is stable and statisti-
cally stationary. However, if we increase � (the coupling
within a population) relative to � (the coupling between
populations), the stationary state can lose stability. Now the
order parameter pulsates, and the chimera starts to breathe
[Fig. 2(b)]. The breathing cycle lengthens as we increase
the disparity A � �� � between the couplings [Fig. 2(c)].
At a critical disparity, the breathing period becomes infi-
nite. Beyond that, the chimera disappears and the synchro-
nized state becomes a global attractor.

To explain these results, we analyze Eq. (1) in the
continuum limit where N� ! 1 for � � 1, 2. Then
Eq. (1) gives rise to the continuity equations

 

@f�

@t
�

@
@�
�f�v�� � 0; (2)

where f���; t� is the probability density of oscillators in
population �, and v���; t� is their velocity, given by

 v���; t� � !�
X2

�0�1

K��0
Z
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0
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(Note that we dropped the superscripts on � to ease the
notation. Thus, � means �� and �0 means ��

0
.) If we define

a complex order parameter
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then v���� simplifies to

 v���; t� � !�
1

2i
�z�e

�i�e�i� � z��e
i�ei��; (5)

where the � denotes complex conjugate.
Following Ott and Antonsen [11], we now consider a

special class of density functions f� that have the form of a
Poisson kernel. The remarkable fact that Ott and Antonsen
discovered is that such kernels satisfy the governing equa-
tions exactly, if a certain low-dimensional system of ordi-
nary differential equations is satisfied. In other words, for
this family of densities, the dynamics reduce from infinite
dimensional to finite (and low) dimensional. (Numerical
evidence suggests that all attractors lie in this family, but
proving this remains an open problem.) Specifically, let

 f���; t� �
1

2�

�
1�

�X1
n�1

�a��t�ei��n � c:c:
��
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What is special here is that we use the same function a��t�
in all the Fourier harmonics, except that a� is raised to the
nth power in the nth harmonic. Inserting this f� into the
governing equations, one finds that this is an exact solution,
as long as

 

_a � � i!a� �
1
2�a

2
�z�e�i� � z��ei�� � 0: (7)

Instead of infinitely many amplitude equations, we have
just one. (It is the same equation for all n.)

To close the system, we express the complex order
parameter z� in terms of a�. Inserting the Poisson kernel
(6) into Eq. (4), and performing the integrations, yields

 z��t� �
X2

�0�1

K��0a
�
�0 �t�; (8)
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FIG. 2 (color online). Order parameter r versus time. In all
three panels, N1 � N2 � 128 and � � 0:1. (a) A � 0:2: stable
chimera; (b) A � 0:28: breathing chimera; (c) A � 0:35: long-
period breather. Numerical integration began from an initial
condition close to the chimera state, and plots shown begin after
allowing a transient time of 2000 units.
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FIG. 1 (color online). Snapshot of a chimera state, obtained by
numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
N2 � 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqs. (6) and (12) (smooth curve) agrees with observed histo-
gram.
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by orthogonality. Thus the amplitude equations become
 

0 � _a1 � i!a1 �
1
2a

2
1�K11a

�
1 � K12a

�
2�e
�i�

� 1
2�K11a1 � K12a2�e

i� (9)

and similarly for _a2, with 1’s and 2’s interchanged.
Rewrite the amplitude equations using polar coordinates

� and 	, defined by a� � ��e
�i	� , � � 1, 2. [The nega-

tive sign is included in the definition of 	 so that the
Poisson kernel f� converges to 
���	��, not 
���
	��, as �! 1 from below. Thus 	� can be interpreted
as the ‘‘center’’ of the density f�, and �� measures how
sharply peaked it is.] Then Eq. (9) becomes
 

0 � _�1 �
�2

1 � 1

2
���1 cos�� ��2 cos�	2 �	1 � ���;

0 � ��1
_	1 � �1!

�
1� �2

1

2
���1 sin�� ��2 sin�	1 �	2 � ���; (10)

and similarly for _�2 and _	2, with 1’s and 2’s interchanged.
Now consider the case of chimera states, for which one

population is in sync while the other is not. Taking � � 1
to be the synchronized population, we set �1 	 1, corre-
sponding to a 
 function for that group. Note that �1 	 1
satisfies the governing equations for all time, since _�1 � 0
when �1 � 1. Hence the condition �1 	 1 defines an
invariant manifold, on which the dynamics reduce to
 

_	1 � !�� sin�� �r sin� � ��;

_r �
1� r2

2
��r cos�� � cos� � ���;

_	2 � !�
1� r2

2r
��r sin�� � sin���  ��
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where we have defined r � �2 and  � 	1 �	2. The (r,
 ) dynamics decouple, yielding a 2D system given by
 

_r �
1� r2

2
��r cos�� � cos� � ���;

_ �
1� r2

2r
��r sin�� � sin� � ���

�� sin�� �r sin� � ��:

(12)

This system has a trivial fixed point r � 1,  � 0 (per-
fectly synchronized state) which always exists. The non-
trivial fixed points correspond to stationary chimera states,
in which the local order parameters �1�t� 	 1 and �2�t� �
r�t� remain constant, as does the phase difference  �t� �
	1�t� �	2�t�, despite the fact that the individual micro-
scopic oscillators in population � � 2 continue to move in
a desynchronized fashion.

Figure 3 plots typical phase portraits for (12).
Figure 3(a) shows a stable chimera state coexisting with
the stable synchronized state; the basin boundary between
them is defined by the stable manifold of a saddle chimera.
As we increase the disparity A between the couplings �

and �, the chimera becomes less stable and eventually
undergoes a supercritical Hopf bifurcation, creating a sta-
ble limit cycle [Fig. 3(b)], the counterpart of the breathing
chimera of Fig. 2(b).

Additional phase plane analysis (not shown) reveals two
other bifurcations. With further increases in A, the limit
cycle expands and approaches the saddle. Meanwhile, its
period lengthens, which accounts for the behavior seen
earlier in Fig. 2(c). At sufficiently large A the cycle touches
the saddle point and destroys itself in a homoclinic bifur-
cation. On the other hand, if A is decreased from its value
in Fig. 3(a), the stable and saddle chimeras in Fig. 3(a)
approach each other, and eventually coalesce and annihi-
late in a saddle-node bifurcation.

Figure 4 summarizes the bifurcations and stability re-
gions for the system. In the rest of the Letter we outline the
analysis leading to these results.

To calculate the fixed points for Eq. (12), we set _r � 0
and r � 1 (since group � � 2 is desynchronized) and
obtain �r cos�� � cos���  � � 0. Substituting � �
�1� A�=2, � � �1� A�=2, and � � �=2� � into _r � 0
and solving for A yields

 A �
sin���  � � r sin�
sin���  � � r sin�

(13)

at a fixed point. Then imposing _ � 0 and using the
expression for A above, we find

 r �

���������������������������������������������
sin�2��  �

sin�2��  � � 2 sin 

s
: (14)

Equations (13) and (14) together parametrize all the
fixed points. They define a surface, or equivalently, a
two-parameter family. Sweeping � and  yields the cor-
responding r and A values. The resulting surface has two
sheets that join along a fold; its projection onto the (�, A)
plane defines the curve of saddle-node bifurcations.
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FIG. 3 (color online). Phase portraits for Eq. (12), regarding r
and  as polar coordinates. Parameters as in Figs. 2(a) and 2(b),
respectively. (a) Stable chimera (solid diamond). (b) Breathing
chimera, shown as a stable limit cycle (thick curve) about
unstable chimera (open dot). In both panels: open diamond,
saddle chimera; thin solid line, unstable manifold; dashed line,
stable manifold; solid dot, stable synchronized state.
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To calculate the saddle-node curve, we linearize (12)
about a fixed point, and set the determinant of the Jacobian
to zero. This implies

 sin��
sin�2��  ��sin��� 2 � � 2 sin��� 2 ��

sin�2��  � � 2 sin 
� 0;

(15)

where we have used Eqs. (13) and (14) to simplify the
determinant. Solving (15) for  ��� yields two roots, but
one of them implies r > 1 and hence is spurious; the
correct root is
 

 � �2�� 2�2 � 2�3 �
11�4

3
� 12�5 �

3271�6

180

�O��7�: (16)

This is then substituted into (14) to yield r���, which in
turn yields A���, via (13). In this way we obtain the saddle-
node curve

 ASN��� � 2�� 2�2 �
7�3

3
�

20�4

3
�

181�5

60
�O��6�;

(17)

which matches the numerical curve shown in Fig. 4.
To find the Hopf curve, we set the trace of the Jacobian

to zero, which gives  � � 1
2 sin�1�2 sin2��. Repeating

the procedure above leads to an exact parametric equation
for the Hopf curve. Its leading order behavior is
 

AH��� � 2�
���
3
p
� �4

���
3
p
� 6��2

�

�
26���

3
p � 10

�
�4 �O��6�: (18)

Future work should investigate whether breathing chi-
meras exist for the one- and two-dimensional arrays of
oscillators studied previously [3–7]. Are the stability dia-
grams for such systems similar to Fig. 4? Do chimeras also
exist if the oscillators are nonidentical [10–12] or arranged
in complex networks [13]? It would also be worth looking
for experimental examples of chimera states. Candidate
systems include arrays of lasers [14] and chemical [15] or
electrochemical [16] oscillators.
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FIG. 4 (color online). Stability diagram for chimera states.
Bifurcation curves: saddle-node (dotted line) and supercritical
Hopf (solid line), both found analytically; homoclinic (dashed
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